Now in a 3rd edition, this successful book provides an intuitive approach to transceiver design, allowing a broad spectrum of readers to understand the topics clearly. It covers a wide range of data link communication design techniques, including link budgets, dynamic range and system analysis of receivers and transmitters used in data link communications, digital modulation and demodulation techniques of phase-shift keyed and frequency hopped spread spectrum systems using phase diagrams, multipath, gain control, an intuitive approach to probability, jamming reduction method using various adaptive processes, global positioning systems (GPS) data link, and direction-finding and interferometers, plus a section on broadband communications and home networking. Various techniques and designs are evaluated for modulating and sending digital data. Thus readers gain a firm understanding of the processes needed to effectively design wireless data link communication systems.

KEY FEATURES

» Provides an understanding of concepts in wireless, data link, and digital communication techniques for both commercial and military sectors.

» Covers digital modulation, spread spectrum modulation and demodulation, link budgets, error detection and correction, probability applications, and a broad coverage of all the elements that make up a digital modulated data link.

» Includes extra topics such as: adaptive process to mitigate narrow band jammers in a broadband communications link, GPS, multipath, and satellite communications. Also includes Link 16, JTRS, military radios, networking link budgets, Eb/No, BER, Pe, direct sequence spread spectrum transmitters, PN code generators, DDFs, AGC, pulsed matched filters, PPM, CDMA, carrier recovery, matched filters & sliding correlators, eye pattern, phase detection, Gaussian processes, quantization error, anti-jam, adaptive filters, intercept receivers, GPS.
Transceiver and System Design for Digital Communications
Transceiver and System Design for Digital Communications

Scott R. Bullock, P.E.

Third Edition
To my loving wife, Debi;
to Crystal, Cindy, Brian, Andy, and Jenny;
and to my mother, Elaine.
Contents

Preface xvii

About the Author xxiii

Transceiver Design 1
1.1 Frequency of Operation ..2
1.2 The Link Budget ..4
1.3 Power in dBm ..5
1.4 Transmitter ...9
 1.4.1 Power from the Transmitter10
 1.4.2 Transmitter Component Losses10
 1.4.3 Transmitter Line Losses from the Power Amplifier to
 Antenna ..10
 1.4.4 Transmitter Antenna Gain11
 1.4.5 Transmitter Antenna Losses12
 1.4.6 Transmitted EIRP ..13
1.5 Channel ..14
 1.5.1 Free-Space Attenuation ..14
 1.5.2 Propagation Losses ...15
 1.5.3 Multipath Losses ..16
1.6 Receiver ...17
 1.6.1 Receiver Antenna Losses18
 1.6.2 Receiver Antenna Gain ...19
 1.6.3 Receiver Line Losses from the Antenna to the LNA ..19
 1.6.4 Receiver Component Losses20
 1.6.5 Received Signal Power at the Output to the LNA21
 1.6.6 Receiver Implementation Loss22
 1.6.7 Received Power for Establishing the SNR of a System ..23
 1.6.8 Received Noise Power ...23
 1.6.9 Noise Figure ...23
 1.6.10 Received Noise Power at the Detector25
 1.6.11 Receiver Bandwidth ..26
 1.6.12 Received E_b/N_0 at the Detector27
 1.6.13 Receiver Coding Gain ...28
 1.6.14 Required E_b/N_0 ...28
 1.6.15 Link Budget Example ...28
CONTENTS

1.6.16 Spread Spectrum Systems 32
1.6.17 Receiver Spreading Losses 32
1.6.18 Process Gain .. 32
1.6.19 Received Power for Establishing the SNR for a Spread Spectrum System .. 33
1.7 Summary ... 33

The Transmitter 35

2.1 Basic Functions of the Transmitter 36
2.1.1 Antenna .. 36
2.1.2 Transmit/Receive Control 37
2.1.3 Power Amplifier .. 38
2.1.4 Upconversion ... 38
2.1.5 Sum and Difference Frequencies Generated in the Upconversion Process .. 40
2.2 Voltage Standing Wave Ratio .. 41
2.2.1 Maximum Power Transfer Principle 42
2.3 Digital Communications .. 44
2.3.1 Digital versus Analog Communications 45
2.3.2 Baseband Modulation of Digital and Analog Systems 45
2.3.3 Software Programmable Radios and Cognitive Radios 46
2.4 Digital Modulation .. 47
2.4.1 Phase-Shift Keying ... 48
2.4.2 Binary Phase-Shift Keying 48
2.4.3 Differential Phase-Shift Keying 50
2.4.4 Quadrature (Quaternary) Phase-Shift Keying 50
2.4.5 Offset QPSK ... 52
2.4.6 Higher Order PSK ... 52
2.4.7 Variations in PSK Schemes 54
2.4.8 π/4 Differential QPSK ... 54
2.4.9 Differential 8-Level PSK 54
2.4.10 16-Offset Quadrature Amplitude Modulation 56
2.4.11 Phasor Constellations and Noise Immunity 57
2.4.12 Continuous Phase PSK .. 59
2.4.13 Spectral Regrowth ... 59
2.4.14 Minimum Shift Keying 60
2.4.15 Frequency-Shift Keying 62
2.4.16 Sidelobe Reduction Methods 63
2.4.17 Ideal Shaping Filter .. 63
2.5 Direct Sequence Spread Spectrum 66
2.5.1 Frequency-Hopping Spread Spectrum 67
2.5.2 Spread Spectrum .. 69
CONTENTS

2.5.3 Jammer Resistance ..69
2.5.4 Despreading to Realize Process Gain in the Spread
 Spectrum System ..72
2.5.5 Maximal Length Sequence Codes73
2.5.6 Maximal Length PN Code Generator74
2.5.7 Maximal Length PN Code Taps75
2.5.8 Gold Codes ...75
2.5.9 Other Codes ..76
2.5.10 Spectral Lines in the Frequency Domain76

2.6 Other Forms of Spread Spectrum Transmissions77
2.6.1 Time Hopping ..77
2.6.2 Chirped-FM ..78

2.7 Multiple Users ..79
2.7.1 Other Methods for Multiuser Techniques81
2.7.2 Orthogonal Signals ...81
2.7.3 Quadrature Phase Detection of Two Signals82
2.7.4 Orthogonal Frequency Division Multiplexing83
2.7.5 Other OFDM Techniques86

2.8 Power Control ..86
2.9 Summary ...88

The Receiver 91

3.1 Superheterodyne Receiver ...91
3.1.1 Basic Functions of the Receiver92
3.2 Antenna ...93
3.3 Transmit/Receive Control ..93
3.4 Limiters ...94
3.5 Image Reject Filter/Band Reject Filter94
3.6 Dynamic Range/Minimum Detectable Signal94
3.7 Types of DR ..97
3.7.1 Amplitude DR ..97
3.7.2 Frequency DR ..97
3.7.3 Single-Tone Frequency DR98
3.7.4 Two-Tone Frequency DR98

3.8 Second- and Third-Order Intermodulation Products99
3.9 Calculating Two-Tone Frequency DR101
3.10 System DR ..102
3.11 Tangential Sensitivity ..104
3.12 Low-Noise Amplifier ...105
3.13 Downconversion ...107
3.14 Splitting Signals into Multiple Bands for Processing108
3.15 Phase Noise ...109
CONTENTS

3.16	Mixers ...110
3.16.1	Mixer Spur Analysis ...112
3.16.2	Sixth-Order Analysis ...113
3.17	Bandwidth Constraints ..114
3.18	Filter Constraints ...114
3.19	Group Delay ...116
3.19.1	Group Delay Compensation ...117
3.20	Sampling Theorem and Aliasing ..118
3.21	Anti-Aliasing Filter ..119
3.22	Analog-to-Digital Converter ..121
3.23	Digital Signal Processing ..122
3.24	Summary ..122

AGC Design and PLL Comparison 125

4.1	AGC Design ...125
4.2	AGC Amplifier Curve ..127
4.3	Linearizers ...130
4.4	Detector ...131
4.5	Loop Filter ...134
4.6	Threshold Level ..134
4.7	Integrator ..135
4.8	Control Theory Analysis ...136
4.8.1	AGC Design Example ..140
4.9	Modulation Frequency Distortion142
4.10	Comparison of the PLL and AGC Using Feedback Analysis
4.11	Basic PLL ...144
4.12	Control System Analysis ..146
4.13	Detector ...146
4.14	Loop Filter ...147
4.15	Loop Gain Constant ..147
4.16	Integrator ...148
4.17	Conversion Gain Constant ..148
4.18	Control Theory Analysis ..148
4.19	Similarities Between the AGC and the PLL152
4.20	Feedback Systems, Oscillations, and Stability152
4.21	Summary ...153

Demodulation 157

5.1	Types of Demodulation ..157
5.2	Pulsed Matched Filter ..158
5.3	Digital Matched Filter Correlator160
CONTENTS

5.4 Pulse Position Modulation ...162
5.5 Code Division Encoding and Decoding164
5.6 Coherent versus Differential Digital Modulation
and Demodulation ...164
5.6.1 Coherent Demodulation167
5.7 Carrier Recovery ...167
5.7.1 Squaring Loop ..168
5.7.2 Costas Loop ...172
5.7.3 Modified Costas Loop and AFC Addition173
5.8 Despreading Correlator ..174
5.9 Symbol Synchronizer ..177
5.10 The Eye Pattern ..179
5.11 Digital Processor ...181
5.12 Intersymbol Interference ...181
5.13 Scrambler/Descrambler ..182
5.14 Phase-Shift Detection ...182
5.15 Shannon's Limit ..185
5.16 Summary ..185

Basic Probability and Pulse Theory 189

6.1 The Gaussian Process ...193
6.2 Quantization and Sampling Errors195
6.3 Probability of Error ..198
6.4 Probability of Detection and False Alarms199
6.5 Pulsed System Probabilities Using the BDF204
6.6 Error Detection and Correction204
6.6.1 Error Detection ...205
6.6.2 Error Detection Using Parity205
6.6.3 Error Detection Using Checksum206
6.6.4 Error Detection Using CRC207
6.6.5 Error Correction ..209
6.6.6 Error Correction using Redundancy209
6.6.7 Forward Error Correction210
6.6.8 Interleaving ...210
6.6.9 Types of FEC ..211
6.6.10 Block Codes ...211
6.6.11 Linear Block Codes ..212
6.6.12 Hamming Code ...217
6.6.13 Convolutional Codes ...220
6.7 Viterbi Decoder ..220
6.7.1 Multi-h ..221
6.8 Turbo and Low-Density Parity Check Codes222
6.9 Theory of Pulse Systems ...224
CONTENTS

6.10 PN Code ... 226
6.11 Summary .. 227

Multipath 229
7.1 Basic Types of Multipath .. 230
7.2 Specular Reflection on a Smooth Surface 230
7.3 Specular Reflection on a Rough Surface 232
7.4 Diffuse Reflection ... 233
7.5 Curvature of the Earth .. 235
7.6 Pulse Systems (Radar) ... 236
7.7 Vector Analysis Approach .. 237
7.8 Power Summation Approach 238
7.9 Multipath Mitigation Techniques 239
 7.9.1 Antenna Diversity .. 239
7.10 Summary .. 240

Improving the System Against Jammers 243
8.1 Burst Jammer ... 244
8.2 Adaptive Filter ... 247
8.3 Digital Filter Intuitive Analysis 248
8.4 Basic Adaptive Filter .. 250
8.5 Least Mean Square Algorithm 251
8.6 Digital/Analog ALE ... 253
8.7 Wideband ALE Jammer Suppressor Filter 258
8.8 Digital Circuitry .. 259
8.9 Simulation .. 260
8.10 Results .. 261
8.11 Amplitude and Phase Suppression Results 261
8.12 Gram-Schmidt Orthogonalizer 266
8.13 Basic GSO ... 268
8.14 Adaptive GSO Implementation 270
8.15 Intercept Receiver Comparison 272
8.16 Summary .. 275

Global Navigation Satellite Systems 279
9.1 Satellite Transmissions ... 279
9.2 Data Signal Structure ... 281
9.3 GPS Receiver .. 282
9.4 Atmospheric Errors .. 282
9.5 Multipath Errors .. 283
9.6 Narrow Correlator .. 283
9.7 Selective Availability .. 285
9.8 Carrier Smoothed Code ... 286
CONTENTS | xiii

9.9 Differential GPS ... 287
9.10 DGPS Time Synchronization .. 288
9.11 Relative GPS .. 289
9.12 Doppler .. 291
9.13 Kinematic Carrier Phase Tracking 291
9.14 Double Difference .. 292
9.15 Wide Lane/Narrow Lane ... 293
9.16 Other Satellite Positioning Systems 294
9.17 Summary .. 295

Satellite Communications 297
10.1 Communications Satellites .. 297
10.2 General Satellite Operation ... 298
10.2.1 Operational Frequencies 299
10.2.2 Modulation .. 300
10.2.3 Adaptive Differential Pulse Code Modulation301
10.3 Fixed Satellite Service ... 301
10.4 Geosynchronous and Geostationary Orbits 302
10.5 Ground Station Antennas ... 303
10.5.1 Types of Antennas Used in Satellite Communications Systems .. 304
10.6 Noise and the Low-Noise Amplifier 306
10.6.1 Equivalent Temperature Analysis 306
10.7 The Link Budget ... 309
10.7.1 Effective Isotropic Radiated Power 309
10.7.2 Propagation Losses ... 309
10.7.3 Received Power at the Receiver 310
10.7.4 Carrier Power/Equivalent Temperature 312
10.8 Multiple Channels in the Same Frequency Band 312
10.9 Multiple Access Schemes .. 313
10.10 Propagation Delay .. 314
10.11 Cost for Use of the Satellites 314
10.12 Regulations .. 314
10.13 Types of Satellites Used for Communications 314
10.14 System Design for Satellite Communications 316
10.15 Summary .. 316

Broadband Communications and Networking 319
11.1 Mobile Users .. 319
11.2 Types of Distribution Methods for the Home 320
11.2.1 Power Line Communications 321
11.2.2 Orthogonal Frequency Division Multiplexing 321
11.3 Home Phoneline Networking Alliance 322
CONTENTS

11.4 Radio Frequency Communications 322
 11.4.1 IEEE 802.11 .. 323
 11.4.2 Bluetooth .. 324
 11.4.3 WiMAX ... 326
11.5 Military Radios and Data Links 327
 11.5.1 The Joint Tactical Radio System 327
 11.5.2 Software Defined Radios 328
 11.5.3 Software Communications Architecture 329
 11.5.4 JTRS Radios (Clusters) 329
 11.5.5 Waveforms .. 330
 11.5.6 JTRS Network Challenge 331
 11.5.7 Gateway and Network Configurations 331
 11.5.8 Link 16 .. 336
 11.5.9 Link 16 Modulation ... 337
 11.5.10 Time Division Multiple Access 338
 11.5.11 “Stacked” Nets ... 338
 11.5.12 Time Slot Reallocation 338
 11.5.13 Bit/Message Structure 338
11.6 Summary .. 339

Direction Finding and Interferometer Analysis 341
 12.1 Interferometer Analysis ... 342
 12.2 Direction Cosines .. 342
 12.3 Basic Interferometer Equation 344
 12.4 Three-Dimensional Approach 345
 12.5 Antenna Position Matrix ... 347
 12.6 Coordinate Conversion Due to Pitch and Roll 349
 12.7 Using Direction Cosines .. 350
 12.8 Alternate Method .. 352
 12.9 Summary .. 354

Answers 355
 Chapter 1 .. 355
 Chapter 2 .. 356
 Chapter 3 .. 360
 Chapter 4 .. 361
 Chapter 5 .. 362
 Chapter 6 .. 363
 Chapter 7 .. 364
 Chapter 8 .. 366
 Chapter 9 .. 367
 Chapter 10 .. 368
 Chapter 11 .. 368
 Chapter 12 .. 369
CONTENTS

Appendix 371
Appendix A ... 371
Appendix B ... 375
Appendix C ... 377
Appendix D ... 379

Index 381
Preface

This book covers basic communications theory and practical implementation of transmitters and receivers. In so doing, I focus on digital modulation, demodulation methods, probabilities, detection of digital signals, and spread spectrum system design and analysis. This book was written for those who want a good understanding of the basic principles of digital wireless communication systems, including spread spectrum techniques. This book also provides a good intuitive and practical approach to digital communications. Therefore it is a valuable resource for anyone involved in wireless communications and transceiver design for digital communications. The reader will gain a broad understanding of basic communication principles for transceiver design, digital communications, and spread spectrum, along with examples of many types of commercial and military data link systems.

Chapter 1 describes transceiver design using a link budget to analyze possible trade-offs. This includes tracking of signal power and noise levels in the system, calculation of the noise figure (NF), the gains and losses of the link, and the required signal level with respect to noise, including the link margin to provide the specified probability of error. This chapter also discusses frequency band designations along with the definitions and uses of decibels (dB). Spread spectrum techniques and process gain (G_p), along with coding gain (G_c), are discussed. The chapter concludes with an example of a link budget and a transceiver design that coincides with the link budget.

Chapter 2 evaluates the basic functions of the transmitter, including antennas, transmit/receive (T/R) control, classes of power amplifiers, the
upconversion process, sum and difference frequencies and the requirement to eliminate one of the conversion products, voltage standing wave ratio (VSWR), and maximum power transfer principle. This chapter discusses the following: advantages of digital versus analog communications, digital modulation techniques including phase-shift keying (PSK) and frequency-shift keying (FSK), phasor constellations and noise immunity, and error vector magnitude as a quality metric of the transmission. This chapter also addresses the advantages of continuous PSK modulation, and spectral regrowth. Shaping filters for the digital waveforms are discussed, with ideal and practical solutions. Direct sequence spread spectrum systems are addressed, along with the advantages of using spread spectrum, including process gain and antijam with jamming margin. Maximal length sequence codes, including Gold codes and others, are included, along with spectral lines that are generated in the frequency domain. Several digital modulation techniques using PSK are provided, along with block diagrams and phasor diagrams to help analyze the different types of PSK systems that are used today. Variations of PSK systems and other types of spread spectrum systems are also discussed, including frequency hopping, time hopping, and chirped frequency modulation (FM). In addition, multiuser techniques are discussed, including time, code, and frequency access systems. Finally, orthogonal techniques including orthogonal frequency division multiplexing (OFDM) are discussed, along with power control to reduce near-far problems.

Chapter 3 covers the basic functions of the receiver, including the antenna, T/R control, image reject filter, low-noise amplifier (LNA), downconversion process, third-order intercept, and various methods to determine dynamic range (DR). Phase noise, mixers, spur analysis, bandwidths, and filters are also addressed. The discussion of digital processing includes principles such as group delay, sampling theorem and aliasing, anti-aliasing filters, and analog/digital converters (ADCs) including piecewise linear ADCs.

Chapter 4 discusses the design and analysis of automatic gain control (AGC). The main elements of a good AGC design are provided, including the amplifier curve, linearizer, detector, loop filter, threshold level, and integrator for zero steady-state error for a step response. Control theory is used to define the stability characteristics of the AGC in order to design the optimal AGC for the system. Chapter 4 also details the phase-locked loop (PLL), particularly for the lock condition, and compares the similarities between the AGC and the PLL. Feedback systems and oscillations, including the Barkhausen criteria, are discussed, along with Bode diagrams to determine both gain and phase margin.

Chapter 5 describes the demodulation process portion of the receiver, which includes the different methods of correlating the incoming digital waveform, such as the matched filter, coherent sliding correlator, pulse
position modulation and demodulation, code tracking loops including early-late gate analysis, and the autocorrelation function. The advantages and disadvantages of coherent versus differential demodulation techniques are discussed. Chapter 5 also contains different types of carrier recovery loops, including the squaring loop, Costas loop, and modifications of the Costas loop. The chapter concludes with a discussion of the symbol synchronizer, the eye pattern, intersymbol interference (ISI), scrambler/descrambler methods, phase-shift detection for intercept receivers, and Shannon's limit for information channel capacity.

Chapter 6 contains a basic discussion of the principles of digital communications. This includes an intuitive and analytical approach to understanding probability theory, which is used in designing and analyzing digital communications. The discussion shows the basic Gaussian distribution and how to apply it to probability of error. Quantization and sampling errors are also evaluated for the system, as well as the probability of error for different types of spread spectrum systems, along with the curves and how to apply them in a design. Also discussed is the probability of false alarm/probability of detection and methods for detecting errors, including parity, checksum, and cyclic redundancy check (CRC). Error correction using forward error correction (FEC) is examined, including topics such as interleaving, block codes, convolutional codes, linear block codes, hamming codes, and others. The Viterbi algorithm, multi-h, low-density parity check (LDPC) codes, and turbo codes are also discussed. Chapter 6 also provides basic theory on pulsed systems, which includes spectral plots of the different pulse types.

Chapter 7 focuses on multipath. This chapter discusses the basic types of multipath, including specular reflection off both smooth and rough surfaces and diffuse reflections off a glistening surface as well as the Rayleigh criteria for determining if the reflections are specular or diffuse. The curvature of the earth is included for systems such as those used for satellite communications. The advantages of using leading edge tracking for radars to mitigate most of the multipath present are discussed. Several approaches to the analysis of multipath are provided, including vector analysis and power summation. Included are discussions on several different multipath mitigation techniques and information on antenna diversity.

Chapter 8 describes methods that improve the system operation against jamming signals. Discussed are burst clamps to minimize the effects of burst jammers, adaptive filtering to reject narrowband signals, and a Gram-Schmidt orthogonalizer that uses two antennas to suppress the jamming signal. An in-depth analysis is provided on the adaptive filter method using the adaptive filter configured as an adaptive line enhancer (ALE) using the least mean square (LMS) algorithm. A discussion of the suppression results due to amplitude and phase variations is included as well. An actual
wideband system, providing simulation and hardware results of the filter, is discussed. In addition, many different types of intercept receivers for detection of signals in the spectrum are included.

Chapter 9 discusses the Global Positioning System (GPS), which uses a direct sequence spread spectrum binary phase-shift keying (BPSK) data link. This chapter includes coarse acquisition (C/A) code, precision (P) code, data signal structure, receiver characteristics, errors due to the atmosphere, multipath, Doppler, and selective availability (SA), which has been turned off. It also discusses the pros and cons of using narrow correlation, carrier smoothing of the code (integrated Doppler), differential GPS, and relative GPS. Kinematic carrier phase tracking (KCPT), the double difference, and wide lane versus narrow lane techniques are also discussed. In addition, other satellite positioning systems are discussed, including the Global Navigational Satellite System from the Soviet Union commonly known as GLONASS, and the Galileo In-Orbit Validation Element (GIOVE) in Europe.

Chapter 10 covers satellite communications for various applications in both the commercial and military sectors. The infrastructure for distributing signals covers the widest range of methods of communications. The most remote places on the earth have the means for communication via satellite. The infrastructure, bandwidth, and availability of satellite communications, along with combining this technology with other types of communications systems, makes this method an ideal candidate for providing ubiquitous communications to everyone worldwide. This chapter discusses frequency bands; modulation, including quadrature phase-shift keying (QPSK), adaptive differential pulse code modulation (ADPCM); geosynchronous and geostationary orbits; and different types of antennas, including primary focus, Cassegrain, and Gregorian. Noise, equivalent temperature, and gain over temperature (G/T) are discussed, as well as how they are used to evaluate different systems and the link budget. Multiple channels and multiple access techniques are discussed for increased capacity. Propagation delay, the cost of use depending on the types of transmission used, which includes permanently assigned multiple access (PAMA), demand assigned multiple access (DAMA), or occasional, and the different types of satellites used for communications are addressed, including low earth orbit satellites (LEOS), geosynchronous earth orbit satellites (GEOS), and medium earth orbit satellites (MEOS).

Chapter 11 covers broadband communications and networking, including high-speed data, voice, and video. Many generations of mobile wireless communication products have evolved through the years and are designated as 1G through 4G. Broadband is also used in the home to connect to the outside world without having to run new wires using power line communications (PLC), phoneline networking alliance (PNA), and radio frequency
(RF) such as IEEE 802.xx and Bluetooth. Along with the distribution of information, networking plays an important role in the connection and interaction of different devices in the home. Worldwide Interoperability for Microwave Access (WiMAX) is another RF wireless link which is based on the IEEE 802.16 standard.

The military is investigating several networking techniques to allow multiple users for communications, command, control, and weapon systems, including the Joint Tactical Radio System (JTRS) and Link 16. Software defined radio (SRD), software communications architecture (SCA), five clusters development, the network challenge including gateways, and different network topologies including Star, Bus, Ring, and Mesh are all discussed in this chapter.

Chapter 12 discusses direction finding (DF) and interferometer analysis using direction cosines and coordinate conversion techniques to provide the correct solution. This chapter provides information on the limitations of the standard interferometer equation and details the necessary steps to design a three-dimensional interferometer solution for the yaw, pitch, and roll of antennas.

Each of the chapters contains problems, with answers provided in the back of the book.

The appendices contain the definitions of heading, roll, pitch, and yaw for coordinate conversions, true north calculations, phase ambiguities for interferometers, elevation effects on azimuth error, and earth’s radius compensation for elevation angle calculation.

If you have any suggestions, corrections, or comments, please send them to Scott Bullock at KK7LC@aol.com.
About the Author

Scott R. Bullock received his BSEE degree from Brigham Young University in 1979 and his MSEE degree from the University of Utah in 1988. Mr. Bullock worked in research and development for most of his career developing a radar simulator, a spread spectrum microscan receiver, a new spread spectrum receiver where he applied for a patent and was awarded company funds as a new idea project to develop the concept. Mr. Bullock also developed a spread spectrum environment simulator for a spread spectrum wideband countermeasures receiver using BPSK, QPSK, SQPSK, MSK, frequency hopper, hybrids, AM, FM, voice generator, jammers, and noise. He also designed a high-frequency adaptive filter used to reduce narrowband jammers in a wideband signal; a broadband, highly accurate frequency hop detector; an instantaneous Fourier transform (IFT) receiver; a chopper modulated receiver; a KU-band radio design for burst spread spectrum communications through a troposscatter channel; a Gram-Schmidt orthogonalizer to reduce jammers; an advanced tactical data link; RF analysis of an optical receiver study; a portable wideband communications detector; and an acoustic-optic spectrum analyzer photodiode array controller.

Mr. Bullock developed the first handheld PCS spread spectrum telephone with Omnipoint in the 902–928 MHz ISM band. He also received a patent for his work on reducing spectral lines to meet the FCC power spectral density requirements.

Mr. Bullock was responsible for various types of spread spectrum data links for the SCAT-1 program related to aircraft GPS landing systems. He was an active participant in the RTCA meetings held in Washington, DC,
for the evaluation and selection of the D8PSK data link to be used as the standard in all SCAT-1 systems. He also worked on the concepts of the Wide Area Augmentation System (WAAS), low probability of intercept (LPI) data link, DS/FH air traffic control asynchronous system, JTRS, and Link-16.

Mr. Bullock developed several commercial products such as wireless jacks for telephones, PBXs, modems, wireless speakers, and other various wireless data link products. He has performed data link communications work and taught seminars for Empower, Texas Instruments, L-3 Com, BAE, Omnipoint, E-Systems, Phonex, L-3 SND, Raytheon, Titan, CIA, SAIC, MKS/ENI, and Thales.

Mr. Bullock has held many high-level positions, such as Vice President of Engineering for Phonex Broadband, Vice President of Engineering for L-3 Satellite Network Division, Director of Research and Development for Empower RF, Senior Director of Engineering for MKS/ENI, and Engineering Fellow at Raytheon. He specializes in wireless data link design and system analysis and directs the design and development of wireless products for both commercial and military customers.

Mr. Bullock holds numerous patents in the areas of spread spectrum wireless data links, adaptive filters, frequency hop detectors, and wireless telephone and data products. He has published numerous articles dealing with spread spectrum modulation types, multipath, AGCs, PLLs, and adaptive filters. He is the author of this book and another book entitled, *Broadband Communications and Home Networking*. He is a licensed professional engineer and a member of IEEE and Eta Kappa Nu. He has taught seminars at many different companies for over 10 years and ATI courses annually. He has taught an advanced communication course at ITT, an engineering course at PIMA Community College, and was a guest lecturer on multiple access systems at PolyTechnic University, Long Island, New York.
Acknowledgements

Special thanks to Larry Huffman, senior scientist and system engineer, for thoroughly reviewing this text and enhancing the book with his experience and expertise.

Thanks to Don Shea, a recognized expert in the field of antennas and interferometers, for providing the technical expertise and consulting for Chapter 12.

Thanks to Brian Adams, Tom Ashburn, and Bill Brettner for providing technical input in their fields of expertise.

Thanks to James Gitre for his thorough review, providing questions and suggestions from the standpoint of an end-user of the book.
A transceiver is a system that contains both a transmitter and a receiver. The transmitter from one transceiver sends a signal through space to the receiver of a second transceiver. After receiving the signal, the transmitter from the second transceiver sends a signal back to the receiver of the first transceiver completing a two-way communications data link system, as shown in Figure 1-1.

![Transceiver Block Diagram](image)

Figure 1-1 A transceiver block diagram.

Proper transceiver design is critical in the cost and performance of a data link. In order to provide the optimal design for the transceiver, a link budget is used to allocate the gains and losses in the link and to perform trade-offs of various parts of the system. The link budget also uses the required signal-to-noise ratio (SNR) or the ratio of bit energy to noise spectral...
density (E_b/N_0) for a given probability of error. These required levels are derived by using probability of error curves given a certain type of modulation. Probability of error curves are discussed in Chapter 6. Generally, since there are both known and unknown variances in the link budget, a link budget will provide an additional SNR or E_b/N_0 which is referred to as the link margin. The link margin is equal to

$$\text{Link margin for analog systems} = \text{SNR (calculated)} - \text{SNR (required)}$$

$$\text{Link margin for digital systems} = \frac{E_b}{N_0}(\text{calculated}) - \frac{E_b}{N_0}(\text{required}).$$

This link margin is used to provide a margin of error in the analysis, hardware implementation, and other factors that can affect the desired performance.

1.1 Frequency of Operation

In a transceiver design, we first determine the radio frequency (RF) of operation. The frequency of operation depends on the following factors:

- RF availability. This is the frequency band that is available for use by a particular system and is specified by the Federal Communications Commission (FCC), which has ultimate control over frequency band allocation. Other organizations that help to establish standards are the International Telecommunications Union Standardization Sector (ITU-T), the European Conference of Postal and Telecommunications Administrations (CEPT), and the European Telecommunications Standards Institute (ETSI).

- Cost. As the frequency increases, the components in the receiver tend to be more expensive. An exception to the rule is when there is a widely used frequency band, such as the cellular radio band, where supply and demand drives down the cost of parts and where integrated circuits are designed for specific applications. These circuits are known as application-specific integrated circuits (ASICs).

- Range and antenna size. As a general rule, decreasing the frequency will also decrease the free-space attenuation (the amount of loss between the transmitter and the receiver), since wavelength is the critical parameter. This results in an increase in range for line-of-sight applications or a decrease in the output power requirement, which would affect cost. However, another factor that affects range is the ability of
the signal to reflect or bounce off the atmosphere, mainly the ionosphere and sometimes the troposphere, which, for specific frequencies, can increase the range tremendously. Amateur radio operators use frequencies that can bounce off the atmosphere and travel around the world with less than 100 W of power. Also, the size of the antenna increases as the frequency decreases. This could affect site constraints due to the size of the antenna and could also be a factor in the cost of the design.

- Customer specified. Often the frequency of operation is specified by the customer, such as the military, and is used for a specific application. However, the frequency allocation must follow the rules currently in place to obtain approval from the FCC or other agencies.

- Band congestion. Ideally the frequency band selected is an unused band or has very little use, especially with no high-power users in the band. This also needs to be approved by the FCC and other agencies.

A listing of the basic frequency bands is shown in Table 1-1 with some applications specified. More detailed frequency allocations can be obtained from the FCC website or in the literature.

Table 1-1 Frequency bands.

- **ELF** Extremely Low Frequency 0–3 KHz
- **VLF** Very Low Frequency 3–30 KHz
- **LF** Low Frequency 30–300 KHz
- **MF** Medium Frequency 300–3000 KHz—AM Radio Broadcast
- **HF** High Frequency 3–30 MHz - Shortwave Broadcast Radio
- **VHF** Very High Frequency 30–300 MHz – TV, FM Radio Broadcast, Mobile/fixed radio
- **UHF** Ultra-High Frequency 300–3000 MHz – TV
- **L-band** 500–1500 MHz – PCS/Cell phones
- **ISM Bands** 902–928 MHz, 2.4 – 2.483 GHz, 5.725 – 5.875 GHz PCS and RFID
- **SHF** Super high Frequencies - (Microwave) 3–30.0 GHz
- **C-band** 3600–7025 MHz – Satellite Communications, radios, radar
- **X-band:** 7.25–8.4 GHz – Mostly Military communications
- **Ku-band** 10.7–14.5 GHz - Satellite Communications, radios, radar
- **Ka-band** 17.3–31.0 GHz - Satellite Communications, radios, radar
- **EHF** Extremely High Frequencies-(Millimeter Wave Signals) 30.0–300 GHz—Satellite
- **Infrared** Radiation 300–430 THz (terahertz) – infrared applications
- **Visible Light** 430–750 THz
- **Ultraviolet Radiation** 1.62–30 PHz (petahertz)
- **X-Rays** 30–300 EHz (exahertz),
- **Gamma Rays** 30–3000 EHz
The frequency bands are all allocated to different users, which makes it virtually impossible to obtain a band that is not already allocated. In addition, there have been reallocations and renaming of the frequency bands. There are basically two accepted frequency band designations, which can cause some confusion. To avoid confusion, both designations of the frequency bands are listed in Table 1-2.

Table 1-2 Frequency band designations.

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency Range</th>
<th>Band</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>I band</td>
<td>to 0.2GHz</td>
<td>A band</td>
<td>to 0.25 GHz</td>
</tr>
<tr>
<td>G band</td>
<td>0.2 to 0.25 GHz</td>
<td>B band</td>
<td>0.25 to 0.5 GHz</td>
</tr>
<tr>
<td>P band</td>
<td>0.25 to 0.5 GHz</td>
<td>C band</td>
<td>0.5 to 1.0 GHz</td>
</tr>
<tr>
<td>L band</td>
<td>0.5 to 1.5 GHz</td>
<td>D band</td>
<td>1 to 2 GHz</td>
</tr>
<tr>
<td>S band</td>
<td>2 to 4 GHz</td>
<td>E band</td>
<td>2 to 3 GHz</td>
</tr>
<tr>
<td>C band</td>
<td>4 to 8 GHz</td>
<td>F band</td>
<td>3 to 4 GHz</td>
</tr>
<tr>
<td>X band</td>
<td>8 to 12 GHz</td>
<td>G band</td>
<td>4 to 6 GHz</td>
</tr>
<tr>
<td>Kα band</td>
<td>12 to 18 GHz</td>
<td>H band</td>
<td>6 to 8 GHz</td>
</tr>
<tr>
<td>K band</td>
<td>18 to 26 GHz</td>
<td>I band</td>
<td>8 to 10 GHz</td>
</tr>
<tr>
<td>Kα band</td>
<td>26 to 40 GHz</td>
<td>J band</td>
<td>10 to 20 GHz</td>
</tr>
<tr>
<td>V band</td>
<td>40 to 75 GHz</td>
<td>K band</td>
<td>20 to 40 GHz</td>
</tr>
<tr>
<td>W band</td>
<td>75 to 111 GHz</td>
<td>L band</td>
<td>40 to 60 GHz</td>
</tr>
<tr>
<td>M band</td>
<td>60 to 100 GHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taking into consideration the above criteria, the frequency of operation is selected. Once the frequency is chosen, a link budget is performed to aid in the design of the data link transceiver.

1.2 The Link Budget

The link budget determines the necessary parameters for successful transmission of a signal from a transmitter to a receiver. The term link refers to linking or connecting the transmitter to the receiver, which is done by sending out RF waves through space. The term budget refers to the allocation of RF power, gains, and losses, and tracks both the signal and the noise levels throughout the entire system, including the link between the transmitter and the receiver. The main items that are included in the budget are the required power output level from the transmitter power amplifier, the gains and losses throughout the system and link, and the SNR for reliable detection, the E_b/N_0 to produce the desired bit error rate (BER), or the probability of detection and probability of false alarm at the receiver. Therefore, when certain parameters are known or selected, the link budget allows the system designer to calculate unknown parameters.

Several of the link budget parameters are given or chosen during the process and the rest of the parameters are calculated. There are many
variables and trade-offs in the design of a transceiver, and each one needs to be evaluated for each system design. For example, there are trade-offs between the power output required from the power amplifier and the size of the antenna. The larger the antenna (producing more gain), the less power is required from the power amplifier. However, the cost and size of the antenna may be too great for the given application. On the other hand, the cost and size of the power amplifier increases as the power output increases, which may be the limiting factor. If the power output requirement is large enough, a solid-state amplifier may not be adequate and therefore a traveling-wave tube amplifier (TWTA) may be needed. The TWTA requires a special high-voltage power supply, which generally increases size and cost. Therefore, by making these kinds of trade-off studies, an optimum data link solution can be designed for a specific application.

Before starting the link budget, all fixed or specified information concerning the transceiver needs to be examined to determine which parameters to calculate in the link budget. The trade-offs need to be evaluated before the link budget is performed and then must be reevaluated to ensure that the right decisions have been made. The parameters for a link budget are listed and explained in this chapter.

1.3 Power in dBm

A decibel (dB) is a unit for expressing the ratio of two amounts of electric or acoustic signal power. The decibel is used to enable the engineer to calculate the resultant power level by simply adding or subtracting gains and losses instead of multiplying and dividing. For example,

\[
\begin{align*}
\text{Amplifier input} &= 150 \, \mu\text{W} = -8.2 \, \text{dBm} \\
\text{Amplifier power gain} &= 13 = 11.1 \, \text{dB} \\
\text{Power output} &= 150 \, \mu\text{W} \times 13 = 1.95 \, \text{mW} = 2.9 \, \text{dBm} \\
\text{Power output (in dBm)} &= -8.2 \, \text{dBm} + 11.1 \, \text{dB} = 2.9 \, \text{dBm} = 1.95 \, \text{mW}
\end{align*}
\]

The terms dB and dBm are extensively used in the industry; dBm is the most common expression of power in the communications industry. dBm is calculated as follows:

\[\text{dBm} = 10\log(P_i),\]

where

\[P_i = \text{power (in mW)}.\]

Gains and losses are expressed in dB. A dB is defined as a power ratio:

\[\text{dB} = 10\log(P_o/P_i),\]
where
\[P_i = \text{the input power (in mW)}, \]
\[P_o = \text{the output power (in mW)}. \]

An example of using dBm and dB is as follows:

\[P_i = 1 \text{ milliwatt or } 0 \text{ dBm} \]
\[P_o = 0 \text{ dBm} + (-40 \text{ dB attenuation}) + (20 \text{ dB gain}) = -20 \text{ dBm}. \]

In many cases, dB and dBm are misused in applications, which can cause errors in the results. The following example demonstrates this confusion.

Example: Suppose that there is a need to keep the output power level of a receiver at 0 dBm ±3 dB. If ±3 dB is mistakenly substituted by ±3 dBm in this case, the following analysis would be made:

\[0 \text{ dBm} = 1 \text{ mW} \]
\[3 \text{ dBm} = 2 \text{ mW} \]

Therefore
\[0 \text{ dBm} \pm 3 \text{ dBm} \]
\[0 \text{ dBm} + 3 \text{ dBm} = 1 \text{ mW} + 2 \text{ mW} = 3 \text{ mW}; \text{ not the correct answer.} \]
\[0 \text{ dBm} - 3 \text{ dBm} = 1 \text{ mW} - 2 \text{ mW} = -1 \text{ mW}; \text{ cannot have negative power.} \]

The correct analysis using dB would be as follows:

\[0 \text{ dBm} \pm 3 \text{ dB} \]
\[0 \text{ dBm} + 3 \text{ dB} = 3 \text{ dBm} = 2 \text{ mW}; \text{ correct answer.} \]
\[0 \text{ dBm} - 3 \text{ dB} = -3 \text{ dBm} = 0.5 \text{ mW}; \text{ correct answer.} \]

Note: 3 dB is twice the power, −3 dB is half the power.

Therefore, they are not interchangeable; the incorrect answers are the result of using the wrong term. Remember, dBm represents an actual power level and dB represents a change in power level, gain or loss. For example, dB—the change in power level—is mistakenly used in place of dBW, which is actually a power level related to watts.

The term dB can be described both in power and voltage. The term dB is a change in signal level, signal amplification, or signal attenuation. It is the ratio of power output to power input. It can also be the difference from a given power level, such as “so many dB below a reference power.” The
The equation is

\[\text{dB} = 10 \log \left(\frac{P_o}{P_i} \right), \]

where

- \(P_o \) = power out,
- \(P_i \) = power in.

For voltage, the same equation is used, substituting \(V^2/R \) for \(P \):

\[dB = 10 \log \left(\frac{V_o^2}{R_o} \right) \]

\[\times \left(\frac{V_i^2}{R_i} \right) \]

where

- \(V_o \) = voltage out,
- \(V_i \) = voltage in,
- \(R_o \) = output impedance,
- \(R_i \) = input impedance.

If \(R_o = R_i \), they cancel and the resultant equation is

\[dB = 10 \log \frac{V_o^2}{V_i^2} = 10 \log \left(\frac{V_o}{V_i} \right)^2 = 20 \log \frac{V_o}{V_i}. \]

Assuming \(R_o = R_i \), dB is the same whether voltage or power is used. Therefore, if the system has 6 dB of gain, it has 6 dB of voltage gain and 6 dB of power gain. The only difference is that the ratio of voltage is increased by two and the ratio of power is increased by four.

For example, if an amplifier has 6 dB of gain, it has four times more power and two times more voltage on the output referenced to the input. Therefore, if the input to the amplifier is 5 V, and the power at the input is 0.5 W, the output voltage would be 10 V and the output power would be 2 W (given that \(R_i = R_o \)). So the gain would be

Voltage gain: \(6 \text{ dB} = 20 \log \left(\frac{V_o}{V_i} \right) = 20 \log \left(\frac{10 \text{ V}}{5 \text{ V}} \right) = 20 \log (2) \)

Power gain: \(6 \text{ dB} = 10 \log \left(\frac{P_o}{P_i} \right) = 10 \log \left(\frac{2 \text{ W}}{0.5 \text{ W}} \right) = 10 \log (4) \).

If \(R_i \neq R_o \), then the dB for voltage is different than the dB for power. In this case, another term is used for voltage gain—dBv—indicating dB volts. Also, voltage gain can be expressed in millivolts, or dBmv, indicating dB millivolts. For example, going from 10 mV to 20 mV would be a 6 dBmv
of gain. However, the caution is that simply changing the impedance can change the voltage gain without an increase in power. For example,

Given:

\[P_i = P_o = 1 \text{ W} \]
\[V_i = 1 \text{ V} \]
\[R_i = 1 \text{ ohm} \]
\[V_o = 2 \text{ V} \]
\[R_o = 4 \text{ ohm} \]

Then:

\[P_i = \frac{V_i^2}{R_i} = \frac{1^2}{1} = 1 \text{ W} \]
\[P_o = \frac{V_o^2}{R_o} = \frac{2^2}{4} = 1 \text{ W} \]
Power gain: \(10 \log \left(\frac{1}{1} \right) = 10 \log (1) = 0 \text{ dB gain} \)
\[V_o = 2V_i \]
Voltage gain: \(20 \log(2) = 6 \text{ dBv gain} \).

There is no power gain in the example above, but by changing the resistance, a voltage gain of 6 dBv was realized. Since power is equal to the voltage times the current \((P = VI) \), in order to achieve a voltage gain of two with the same power, the current gain is decreased by two.

The following are some definitions for several log terms that are referred to and used in the industry today:

- \(\text{dB} \) is the ratio of signal levels, which indicates the gain or loss in signal level.
- \(\text{dBm} \) is a power level in milliwatts: \(10 \log P \), where \(P = \text{power (in mW)}. \)
- \(\text{dBW} \) is a power level in watts: \(10 \log P \), where \(P = \text{power (in W)}. \)
- \(\text{dBc} \) is the difference in power between a signal that is used as the carrier frequency and another signal, generally an unwanted signal, such as a harmonic of the carrier frequency.
- \(\text{dBi} \) is the gain of an antenna with respect to the gain of an ideal isotropic radiator.

There are several other dB terms, similar to the last two, which refer to how many dB away a particular signal is from a reference level. For example, if a signal is 20 times smaller than a reference signal \(r \), then the signal is \(-13 \text{ dBt} \), which means that the signal is 13 dB smaller than the reference signal.
There is one more point to consider when applying the term dB in a link budget. When referring to attenuation or losses, the output power is less than the input power, so the attenuation in dB is negative. Therefore, when calculating the link budget, the attenuation and losses are summed together with the gains. For example, if we have a power of +5 dBm, and the attenuation in dB is equal to −20 dB, then the output of the signal level is equal to

\[+5 \text{ dBm} + (-20 \text{ dB losses}) = -15 \text{ dBm}. \]

Another approach would be to subtract the attenuation and losses from the gains, which would mean that the attenuation and losses would then be positive:

\[+5 \text{ dBm} - (20 \text{ dB losses}) = -15 \text{ dBm}. \]

Each method will produce the same answer; the first method is standard in this text.

1.4 Transmitter

The transmitter is the part of the transceiver that creates, modulates, and transmits the signal through space to the receiver (see Figure 1-1). The transmitter is responsible for providing the power required to transmit the signal through the link to the receiver. This includes the power amplifier, the transmitter antenna, and the gains and losses associated with the process, such as cable and component losses, to provide the effective isotropic radiated power (EIRP) out of the antenna (see Figure 1-2).

Figure 1-2 The RF section of the transmitter.
1.4.1 Power from the Transmitter

The power from the transmitter \(P_t \) is the amount of power output of the final stage of the power amplifier. For ease of calculating the link budget, the power is in dBm or converted to dBm from milliwatts. The power in milliwatts is converted to power in dBm by

\[
P_{\text{dbm}} = 10\log_{10} P_{\text{mW}}.
\]

Therefore 1 mW is equal to 0 dBm. The unit dBm is used extensively in the industry and a good understanding of this term and other dB terms is important. The term dBm is actually a power level related to 1 mW and is not a loss or gain as is the term dB.

1.4.2 Transmitter Component Losses

With most transceiver systems, there will be RF components such as a circulator or a transmit/receive (T/R) switch that enable the transceiver to use the same antenna for both transmitting and receiving (see Figure 2–1). Also, if there are antenna arrays using multiple antennas, there will be components that interconnect the individual antenna elements. Since these elements have a loss associated with them, they need to be taken into account when calculating the link budget. These losses directly reduce the signal for the link budget. The component losses are labeled and are included in the analysis:

\[
L_{\text{comp}} = \text{switchers, circulators, antenna connections}.
\]

Whichever method is used, the losses directly affect the link budget on a one-for-one basis. A 1 dB loss equals a 1 dB loss in the link analysis. Therefore the losses between the final output power amplifier at the transmitter and the first amplifier of the receiver should be kept to a minimum. Each dB of loss in this path will either reduce the minimum detectable signal (MDS) by 1 dB or the transmitter gain will have to transmit 1 dB more power.

1.4.3 Transmitter Line Losses from the Power Amplifier to Antenna

Since most transmitters are located at a distance from the antenna, the cable or waveguide connecting the transmitter to the antenna contains losses that need to be incorporated in the link budget:

\[
L_{\text{ll}} = \text{coaxial or waveguide line losses (in dB).}
\]
These transmitter line losses are included in the link budget as a direct attenuation; a 1 dB loss equals a 1 dB loss in the link analysis. Using larger diameter cables or higher quality cables can reduce the loss, which is a trade-off with cost. For example, heliax cables are used for very low-loss applications, however, they are generally more expensive and larger in diameter than standard cables.

Another way to reduce the loss between the transmitter and the antenna is to locate the transmitter power amplifier as close to the antenna as possible. This will reduce the length of the cable, which reduces the loss in the link analysis.

1.4.4 Transmitter Antenna Gain

Most antennas experience gain because they tend to focus energy in specified directions as compared to an ideal isotropic antenna which radiates in all directions. Antennas do not amplify the signal power but focus the existing signal in a given direction. This is similar to a magnifying glass, which can be used to focus the sun’s rays in a specific direction, increasing the signal level at a single point.

A simple vertical dipole antenna experiences approximately 2.1 dBi of gain because it transmits most of the signal around the antenna, with very little of the signal transmitted directly up to the sky and directly down to the ground (see Figure 1-3).

\[G_t = 10\log\left(n(\pi D/\lambda)^2\right), \]

Figure 1-3 A simple vertical dipole antenna gain.

A parabolic dish radiator is commonly used at high frequencies to achieve gain by focusing the signal in the direction the antenna is pointing (see Figure 1-4). The gain for a parabolic antenna is
Figure 1-4 A parabolic dish antenna for improved gain.

where

\[
G_t = \text{gain of the antenna (in dBi),}
\]
\[
n = \text{efficiency factor < 1,}
\]
\[
D = \text{diameter of the parabolic dish,}
\]
\[
\lambda = \text{wavelength.}
\]

The efficiency factor is the actual gain of the antenna compared to the theoretical gain. This can result from a parabolic antenna that is not quite parabolic, the surface of the antenna combined with the feed is not uniform, and other anomalies in the actual implementation of the antenna system. Typically this ranges from 0.5 to 0.8, depending on the design and the frequency of operation.

Notice that the antenna gain increases both with increasing diameter and higher frequency (shorter wavelength). The gain of the antenna is a direct gain in the link budget. A 1 dB gain equals a 1 dB improvement in the link analysis. Therefore the more gain the antenna can produce, the less power the power amplifier has to deliver. This is another trade-off that needs to be considered to ensure the best design and the lowest cost for a given application.

1.4.5 Transmitter Antenna Losses

There are several losses associated with the antenna. Some of the possible losses, which may or may not be present in each antenna, are listed below:
• \(L_{tr} \), radome losses on the transmitter antenna. The radome is the covering over the antenna that protects the antenna from the outside elements. Most antennas do not require a radome.

• \(L_{tpol} \), polarization mismatch losses. Many antennas are polarized (i.e., horizontal, vertical, or circular). This defines the spatial position or orientation of the electric and magnetic fields. A mismatch loss is due to the polarization of the transmitter antenna being spacially off with respect to the receiver antenna. The amount of loss is equal to the angle difference between them. For example, if both the receiver and transmitter antennas are vertically polarized, they would be at 90° from the earth. If one is positioned at 80°, and the other is positioned at 100°, the difference is 20°. Therefore the loss due to polarization would be

\[
20\log(\cos \theta) = 20\log(\cos 20) = 0.54 \text{ dB}.
\]

• \(L_{tfoc} \), focusing loss or refractive loss. This is a loss caused by imperfections in the shape of the antenna, so that the energy is focused toward the feed. This is often a factor when the antenna receives signals at low elevation angles.

• \(L_{tpoint} \), mispointed loss. This is caused by transmitting and receiving directional antennas that are not exactly lined up and pointed towards each other. Therefore the gains of the antennas do not add up without a loss of signal power.

• \(L_{tcon} \), conscan crossover loss. This loss is only present if the antenna is scanned in a circular search pattern, such as a conscan (conical scan) radar searching for a target. Conscan means that the antenna system is either electrically or mechanically scanned in a conical fashion, or in a cone-shaped pattern. This is used in radar and other systems that desire a broader band of spacial coverage but must maintain a narrow beamwidth.

The total transmitter antenna losses in the link budget are

\[
L_{ta} = L_{tr} + L_{tpol} + L_{tfoc} + L_{tpoint} + L_{tcon}.
\]

These losses are also a direct attenuation: a 1 dB loss equals a 1 dB loss in the link analysis.

1.4.6 Transmitted EIRP

An isotropic radiator is a theoretical radiator that assumes a point source radiating in all directions. EIRP is the amount of power from a
single point radiator that is required to equal the amount of power that is transmitted by the power amplifier, losses, and directivity of the antenna (antenna gain) in the direction of the receiver. The EIRP provides a way to compare different transmitters. To analyze the output of an antenna, EIRP is used:

\[
\text{EIRP} = P_t + L_{\text{comp}} + L_{\text{ll}} + G_t + L_{\text{ta}},
\]

where:
- \(P_t\) = transmitter power,
- \(L_{\text{comp}}\) = switchers, circulators, antenna connections,
- \(L_{\text{ll}}\) = coaxial or waveguide line losses (in dB),
- \(G_t\) = transmitter antenna gain,
- \(L_{\text{ta}}\) = total transmitter antenna losses.

Effective radiated power (ERP) is another term used to describe the output power of an antenna. However, instead of comparing the effective power to an isotropic radiator, the power output of the antenna is compared to a dipole antenna. The relationship between EIRP and ERP is

\[
\text{EIRP} = \text{ERP} + G_{\text{dipole}},
\]

where \(G_{\text{dipole}}\) is the gain of a dipole antenna, which is equal to approximately 2.14 dB. For example,

\[
\begin{align*}
\text{EIRP} &= 10 \text{ dBm} \\
\text{ERP} &= \text{EIRP} - G_{\text{dipole}} = 10 \text{ dBm} - 2.14 \text{ dB} = 7.86 \text{ dBm}.
\end{align*}
\]

1.5 Channel

The channel is the path of the RF signal that is transmitted from the transmitter antenna to the receiver antenna (see Figure 1-1). This is the signal in space that is attenuated by the channel medium. The main contributor to channel loss is free-space attenuation. The other losses, such as the propagation losses and multipath losses, are fairly small compared to free-space attenuation. The losses are depicted in Figure 1-5 and are described in detail in the following paragraphs.

1.5.1 Free-Space Attenuation

As a wave propagates through space, there is a loss associated with it. This loss is due to dispersion, the "spreading out" of the beam of radio
energy as it propagates through space. This loss is consistent and relative to wavelength, which means that it increases with frequency as the wavelength becomes shorter. This is called free-space loss or path loss and is related to both the frequency and the slant range, which is the distance between the transmitter and receiver antennas. Free-space loss is given by

\[A_{fs} = 20 \log\left(\frac{4\pi R}{\lambda}\right) = 20 \log\left(\frac{4\pi Rf}{c}\right), \]

where:
- \(A_{fs} = \) free-space loss,
- \(R = \) slant range (same units as \(\lambda \)),
- \(\lambda = \) wavelength = \(c/f \),
- \(f = \) frequency of operation,
- \(c = \) speed of light, \(300 \times 10^6 \) m/sec, \(R \) is in meters.

Therefore the free-space loss increases as both the range and frequency increase. This loss is also a direct attenuation: a 1 dB loss equals a 1 dB loss in the link analysis.

1.5.2 Propagation Losses

There are other losses, depending on the conditions in the atmosphere, such as clouds, rain, and humidity, which need to be included in the link budget. There are three main losses:

- Cloud loss—loss due to water vapor in clouds.
- Rain loss—loss due to rain.
- Atmospheric absorption (oxygen loss)—loss due to the atmosphere.
These values vary from day to day and from region to region. Each loss depends on the location, and a nominal loss, generally not the worst case, is used for the link analysis.

To get a feel for the types of attenuation that can be expected, some typical numbers are shown below:

- Rain loss = −1 dB/mile at 14 GHz with 0.5″/hr rainfall.
- Rain loss = −2 dB/mile at 14 GHz with 1″/hr rainfall.
- Atmospheric losses = −0.1 dB/nautical mile for a frequency range of approximately 10–20 GHz.
- Atmospheric losses = −0.01 dB/nautical mile for a frequency range of approximately 1–10 GHz.

A typical example gives a propagation loss of approximately −9.6 dB for the following conditions:

- Frequency = 18 GHz
- Range = 10 nm
- Rainfall rate = 12 mm/hr
- Rain temperature = 18°C
- Cloud density = 0.3 g/m³
- Cloud height = 3–6 km.

To determine the actual loss for a particular system, there are several excellent sources that can be consulted. These propagation losses are also a direct attenuation for the link budget: a 1 dB loss equals a 1 dB loss in the link analysis.

1.5.3 Multipath Losses

Whenever a signal is sent out in space, the signal can either travel on a direct path from the transmitter antenna to the receiver antenna, or it can take multiple indirect paths caused by reflections off of objects, which is known as multipath. The most direct path the signal can take has the least amount of attenuation. The other paths (or multipath) are attenuated but can interfere with the direct path at the receiver. It is similar to a pool table, where you can hit a ball by aiming directly at the ball or you can bank it off the table with the correct angle to hit the ball. If both balls are in motion, they may interfere with each other at the input to the pocket.
The problem with multipath is that the signal takes both paths and interferes with itself at the receiving end. The reflected path has a reflection coefficient that determines the phase and the amplitude of the reflected signal, which can be different from the direct path. Also, the path length is longer, which produces a signal with a different phase. If the phase of the reflected path is different, for example, 180° out of phase from the direct path, and the amplitudes are the same, then the signal is cancelled out and the receiver sees very little to no signal.

Most of the time the reflected path is attenuated, since it is generally a longer path length than the direct path. Also, the level of the multipath depends on the reflection coefficient and the type of multipath. It does not completely cancel out the signal, but can alter the amplitude and phase of the direct signal. Therefore multipath can affect coverage and accuracy where reliable amplitude or phase measurements are required. A further discussion on multipath is presented in Chapter 7. The losses are included in the link budget as follows:

\[L_{\text{multi}} = \text{losses due to multipath cancellation of the direct path signal (in dB).} \]

This loss is generally hard to quantize since there are many variables and many potential paths, so the analysis of the amount of loss that is used is associated with a probability number (see Chapter 7). Multipath is constantly changing and certain conditions can adversely affect the coverage and the phase measurement accuracy. This loss is also a direct attenuation: a 1 dB loss equals a 1 dB loss in the link analysis. Careful siting of the antennas in a given environment is the most effective way to reduce the effects of multipath. Also, blanking methods to ignore signals received after the desired signal for long multipath returns are often used to help mitigate multipath. And finally, antenna diversity is another method to reduce multipath. A detailed discussion of multipath is presented in Chapter 7.

1.6 Receiver

The receiver accepts the signal that was sent by the transmitter through the channel via the receiver antenna (see Figure 1-6). The losses from the antenna to the low-noise amplifier (LNA) should be kept as small as possible. This includes cable losses and component losses that are between the antenna and the LNA (see Figure 1-6). The distance between the receiver antenna and the LNA should also be as small as possible. Some systems actually include the LNA with the antenna system, separate from the rest
of the receiver, to minimize this loss. The main job of the receiver is to receive the transmitted signal and detect the data that it carries in the most effective way without further degrading the signal.

1.6.1 Receiver Antenna Losses

Antenna losses for the receiver are very similar to those for the transmitter. Some of these losses are listed below:

- L_{rr}, radome losses on the receiver antenna. The radome is the covering over the antenna that protects the antenna from the outside elements.

- L_{rpol}, polarization loss. Many antennas are polarized (i.e., horizontal, vertical, or circular). This defines the spacial position or orientation of the electric and magnetic fields.

- L_{rfoe}, focusing loss or refractive loss. This is a loss caused by imperfections in the shape of the antenna, so that the energy is focused toward the feed. This is often a factor when the antenna receives signals at low elevation angles.

- L_{rpoint}, mispointed loss. This is caused by transmitting and receiving directional antennas that are not exactly lined up and pointed towards each other. Therefore the gains of the antennas do not add up without a loss of signal power. Note that this loss may be combined into one number so that it is not included in both the receiver analysis and the transmitter analysis.

- L_{rcon}, conscan crossover loss. This loss is present if the antenna is scanned in a circular search pattern.
The total losses for the antenna can be calculated by adding all of the losses together, assuming that their values are in dB:

\[L_{ra} = L_{rr} + L_{rpol} + L_{rfoc} + L_{rpoint} + L_{rcon}. \]

This total loss, as was the case in the transmitter section, is a direct attenuation of the signal: a 1 dB loss equals a 1 dB loss in the link analysis.

1.6.2 Receiver Antenna Gain

The gain of the receiver antenna (in dB) is calculated in the same way as the transmitter antenna gain:

\[G_r = 10\log \left[n(\pi D/\lambda^2) \right]. \]

where

- \(n = \) efficiency factor < 1,
- \(D = \) diameter of the parabolic dish,
- \(\lambda = \) wavelength.

The receiver antenna is not required to have the same antenna as the transmitter. The receiver can use an omnidirectional antenna and receive transmissions from a transmitter using a parabolic dish antenna, or the transmitter can be an omnidirectional antenna and the receiver can use a parabolic dish. However, if this is a direct line-of-site system, the antennas should have the same polarization. For example, if a transmitter is using a vertically polarized antenna, the receiver should have a vertically polarized antenna. An exception to this rule is if the system is using the ionosphere to bounce the signal for maximum range, then the polarization can be reversed by the reflection off the ionosphere. For example, if a transmitter is using a horizontally polarized antenna, the optimal receiver antenna may be vertically polarized if the reflection off the ionosphere causes reversal of the polarization. The gain of the antenna is a direct gain in the link budget: a 1 dB gain equals a 1 dB improvement in the link analysis.

1.6.3 Receiver Line Losses from the Antenna to the LNA

The cable that connects the antenna to the first amplifier which is designated as a LNA is included in the budget:

\[L_{rll} = \text{coaxial or waveguide line losses (in dB)}. \]
The amplifier is referred to as a LNA because the noise figure (NF) of the system is determined mainly by the first amplifier in the receiver. This amplifier is designed to have a very low NF. A discussion and calculation of the NF of a system are provided later in this chapter. The important thing is that the NF directly affects the link budget as a one-for-one dB loss. The cable loss between the antenna and the LNA, as was the case in the transmitter section, is a direct attenuation of the signal: a 1 dB loss equals a 1 dB loss in the link analysis. Therefore, as mentioned before, the cable length should be kept as short as possible, with the option of putting the LNA with the antenna assembly.

1.6.4 Receiver Component Losses

Any components between the antenna and LNA will reduce the SNR of the system. For example, often a limiter is placed in the line between the antenna and the LNA to protect the LNA from damage by high-power signals. This can be included in the NF of the receiver or viewed as a loss of the signal. Both methods are used in the industry, with the same end results, since the first method increases the noise and the second method decreases the signal level, producing the same SNR results for the receiver.

However, since this loss does not add noise to the system, but only attenuates the signal, a more straightforward approach would be to treat it as a loss in signal level and calculate the NF separately. The noise before and after the lossy devices is the same since the temperature before and after the device is the same. Only the signal level is attenuated. The noise on the front end of the receiver before the LNA is equal to \(kT_B \), where

\[
\begin{align*}
 k & = \text{Boltzmann constant} \ (1.38 \times 10^{-23} \text{ J/K}), \\
 T & = \text{nominal temperature} \ (290^\circ \text{K}), \\
 B & = \text{bandwidth}.
\end{align*}
\]

For a 1 Hz bandwidth:

\[
kT_B = 1.38 \times 10^{-23} \text{ J/K} \times 290^\circ \text{K} \times 1 \text{ Hz} = 4.002 \times 10^{-21} \text{ W} \\
= 4.002 \times 10^{-18} \text{ mW}.
\]

Converting to dBm:

\[
10 \log(kT_B) = 10 \log(4.002 \times 10^{-18}) = -174 \text{ dBm}.
\]
A convenient way to calculate the kTB noise is to use the 1 Hz bandwidth number above, and simply take $10\log(B)$ and add to it. For example, for a 1 MHz bandwidth:

$$-174 \text{ dBm} + 10\log(1\text{ MHz}) \text{ dB} = -174 \text{ dBm} + 10\log(10^6 \text{ Hz}) \text{ dB}$$

$$= -174 \text{ dBm} + 60 \text{ dB} = -114 \text{ dBm}.$$

The LNA amplifies the input signal and noise, and during this amplification process additional noise is present at the output, mainly due to the active transistors in the amplifier. This additional noise is referred to as the NF of the LNA and increases the overall noise floor, which reduces the SNR. Therefore the resultant noise floor is equal to $kTBF$, where F is the noise added due to the LNA. The rest of the components of the receiver add some noise to the $kTBF$ noise floor, but this contribution is relatively small. The amount of additional noise is dependent on how much loss versus gain there is after the LNA and if the noise floor starts approaching the kTB noise. Also, if the bandwidth becomes larger than the initial kTB bandwidth at the LNA, then the NF can degrade. Calculation of the actual receiver noise is discussed later. The important concept is that the LNA is the main contributor in establishing the noise for the receiver and must be carefully designed to maintain the best SNR for detection of the desired signal. The kTB noise is a constant noise floor unless the temperature or bandwidth is changed. Therefore, in the link budget, the receiver component losses before the LNA are applied to the signal, thus reducing the SNR:

$$L_{\text{comp}} = \text{switches, circulators, limiters, and filters}.$$

This loss, as was the case in the transmitter section, is a direct attenuation of the signal: a 1 dB loss equals a 1 dB loss in the link analysis.

1.6.5 Received Signal Power at the Output to the LNA

The received signal level P_s (in dBm) at the output of the LNA is calculated as follows:

$$P_s = \text{EIRP} + A_{fs} + L_p + L_{\text{multi}} + L_{\text{ra}} + G_r + L_{\text{rl}} + L_{\text{comp}} + G_{\text{LNA}}.$$
where
\[
EIRP = \text{effective radiated isotropic power}, \\
A_{fs} = \text{free-space attenuation}, \\
L_p = \text{propagation loss}, \\
L_{multi} = \text{multipath losses}, \\
L_{ra} = \text{total receiver antenna losses}, \\
G_r = \text{receiver antenna gain}, \\
L_{cyl} = \text{coaxial or waveguide line losses (in dB)}, \\
L_{comp} = \text{switches, circulators, limiters, and filters}, \\
G_{LNA} = \text{gain of the LNA}.
\]

This equation makes the assumption that all the losses are negative and \(G_r, G_{LNA}\), and EIRP are positive. Also, all the parameters are in dB, dBm, or dBW. Most often dBm is used as the standard method of specifying power.

The noise out of the LNA (in dBm) is equal to
\[
N_{LNA} = kTB \text{ dBm} + F \text{ dB} + G_{LNA} \text{ dB}.
\]

Thus a preliminary SNR can be calculated to obtain an estimate of the performance of a receiver by using the SNR at the output of the LNA. Since the SNR is a ratio of the signal and noise, and since both the signal power and the noise power is in dBm, a simple subtraction of the signal minus the noise will produce a SNR in dB as follows:
\[
\text{SNR} = P_s - N_{LNA},
\]

where
\[
\text{SNR} = \text{signal-to-noise ratio (in dB)}, \\
P_s = \text{power out of the LNA (in dBm)}, \\
N_{LNA} = \text{noise power out of the LNA (in dBm)}.
\]

One point to note is that because the gain of the LNA, \(G_{LNA}\), is applied to both the signal level and the noise level, this gain term can be eliminated for the purposes of calculating the SNR at the output of the LNA, since the terms will cancel out.

1.6.6 Receiver Implementation Loss

When implementing a receiver in hardware, there are several components that do not behave ideally. Losses associated with these devices that degrade the SNR need to be accounted for in the link budget. One of the contributors to this loss is the phase noise or jitter of all of the oscillator sources in the system, including the up- and downconversion oscillators, code and
carrier tracking oscillators, phase-locked loops (PLLs), match filters, and analog-to-digital (A/D) oscillators. Another source of implementation loss is the detector process, including nonideal components and quantization errors. This loss directly affects the receiver’s performance and directly degrades the link budget. Implementation losses (L_i) are included to account for the departure from the ideal design due to hardware implementation.

A ballpark figure for implementation losses for a typical receiver is about -3 dB. With more stable oscillators and close attention during receiver design, this can be reduced. This loss will vary from system to system and should be analyzed for each receiver system. This loss is a direct attenuation of the signal: a 1 dB loss equals a 1 dB loss in the link analysis.

1.6.7 Received Power for Establishing the SNR of a System

The detected power P_d or S (in dB) that is used to calculate the final SNR used in the analysis is

$$P_d = P_s + L_i + G_{receiver} = S \text{ (in dB)}$$

where:
- $P_s =$ power to the LNA (in dBm),
- $L_i =$ implementation losses,
- $G_{receiver} =$ receiver gain.

The receiver gain is applied to both the signal and the noise and is cancelled out during the SNR calculation. Therefore, carrying the receiver gain through the rest of the analysis is optional.

1.6.8 Received Noise Power

The noise power (N) of the receiver is compared to the signal power (S) of the receiver to determine a power SNR. The noise power is initially specified using temperature and bandwidth. System-induced noise is added to this basic noise to establish the noise power for the system.

1.6.9 Noise Figure

The standard noise equation for calculating the noise out of the receiver is

$$N = kT_oBF,$$
where

\[T_o = \text{nominal temperature (290\,^\circ K)}, \]
\[F = \text{noise factor}, \]
\[k = \text{Boltzmann constant (1.38 \times 10^{-23} \, J/\,^\circ K)}, \]
\[B = \text{bandwidth}. \]

The noise factor is the increase in noise that is caused by an active device generating noise that is greater than the \(kTB \) noise. For example, if the noise at the output of an active device is 100 times larger than the \(kTB \) noise, then the noise factor would be 100. The NF is the noise factor in dB. For example:

\[\text{Noise factor} = F = 100 \]
\[\text{NF} = F \, \text{dB} = 10\log(100) = 20 \, \text{dB}. \]

If the NF is used, then the noise out of the receiver is in dB and the equation is

\[N \, \text{dB} = 10\log(kTB) + F \, \text{dB}. \]

Therefore, when solving for the noise of the receiver using the SNR, the equations become

\[\text{Noise factor} = \frac{\text{SNR}_{out}}{\text{SNR}_{in}} \]
\[\text{NF (dB)} = 10\log(\text{SNR}_{in}) - 10\log(\text{SNR}_{out}) = \text{SNR}_{in} \, \text{dB} - \text{SNR}_{out} \, \text{dB}. \]

The noise out of the receiver will be \(kT_o BF \) plus any effects due to the difference in temperature, with \(F \) being the receiver noise factor:

\[N = kT_o BF + (kT_s B - kT_o B) = kT_o BF + kB(T_s - T_o) = kT_o BF_t. \]

Solving for \(F_t \):

\[F_t = F + (T_s - T_o)/T_o, \]

where

\[T_s = \text{sky temperature}. \]

If \(T_s = T_o \), then the noise is \(N = kT_o BF \). Since generally \(T_s \) is less than \(T_o \), the noise will be less than the standard \(kT_o BF \) and the noise factor is reduced by \((T_s - T_o)/T_o\).
The NF for the receiver is approximated by the LNA NF, F_{LNA}, assuming that the losses are not too great compared to the gain of the receiver. If the losses plus the next amplifier’s NF are high relative to the gain of the first amplifier, then the noise factor is calculated as

$$F_t = F_1 + \left[(F_2 \times \text{Losses}) - 1 \right] / G_1.$$

The complete noise factor equation for the receiver is

$$F_t = F_1 + \left[(F_2 \times \text{Losses}) - 1 \right] / G_1 + \left[(F_3 \times \text{Losses}) - 1 \right] / G_1 G_2 \ldots .$$

The losses before the LNA are not included in the NF calculation since they do not add noise to the system and are losses to the signal which are included in the link budget analysis.

However, sometimes the NF is calculated at the antenna. Then the line losses would not be included in the link budget but would affect the NF directly; a 1 dB loss would be a 1 dB higher NF. The reason for this is that the noise temperature is the same before and after the losses, so the kT noise is the same, but the signal is attenuated. Therefore the SNR is reduced on the output. There is no additional noise added to the system, however, the NF has been defined as $\text{SNR}_{in} - \text{SNR}_{out}$ (in dB). This is true only if the bandwidths of the input and the output are the same. One major assumption is that the bandwidth is smaller as the signal progresses through the receiver. If the bandwidth increases, then the NF increases. This NF increase could be substantial and may need to be included in the analysis.

1.6.10 Received Noise Power at the Detector

The noise power at the detector is computed by converting the parameters of the noise factors into dB to simplify the calculation. The gain of the receiver, $G_{receiver}$, is included in this example:

$$N \text{ dB} = kT_0 \text{ dB} + B \text{ dB} + F_{LNA} \text{ dB} + G_{receiver} \text{ dB}$$

Note that this assumes $T_s = T_0$ and that the line losses are included in the link budget and not the NF.

Eliminating $G_{receiver}$ for analysis purposes is optional since the gain is common to both the noise power and the signal power. However, it is often included in the link budget so that the analysis shows the signal and noise levels through the receiver.
1.6.11 Receiver Bandwidth

The SNR is used for analog signals where the signal S is the signal power of the analog signal and noise N is the amount of noise power in the required bandwidth for sending the analog signal. For digital modulation, square pulses or bits are used to send information from the transmitter to the receiver. The amount of energy in a single bit is denoted as E_b. The bit rate or the number of bits per second is denoted as R_b. The signal power for a digital modulation system is equal to the energy in a single bit times the bit rate:

$$S = E_b \times R_b.$$

The noise power, N, is equal to the noise power spectral density, N_o (which is the amount of noise per Hz, or in other words, the amount of noise in a 1 Hz bandwidth), times the bandwidth, B, of the digital system:

$$N = N_o \times B.$$

Therefore the SNR for the digital system is equal to

$$S = E_b \times R_b$$
$$N = N_o \times B$$
$$\text{SNR} = E_b/N_o \times R_b/B.$$

The bandwidth for a basic digital system is equal to the bit rate. In this case, the SNR is equal to

$$\text{SNR} = E_b/N_o.$$

For more complex digital communications, the bandwidth may not equal the bit rate, so the entire equation needs to be carried out.

For example, one method of digital modulation is to change the phase of a frequency in accordance with the digital signal, a digital "0" is 0° phase and a digital “1” is 180° phase. This is known as binary phase-shift keying (BPSK) (the types of digital modulation are discussed later in this book). For BPSK, the bandwidth is equal to the bit rate:

$$\text{SNR} = E_b/N_o \times R_b/B$$
$$\text{SNR} = E_b/N_o.$$
However, if a more complex digital modulation waveform is used that contains four phase states—0°, 90°, 180°, -90°—such as quadrature phase-shift keying (QPSK), then the bit rate is twice as fast as the bandwidth required because there are two bits of information for one phase shift. Further explanation is provided in Chapter 2. Therefore the SNR is equal to

$$\text{SNR} = \frac{E_b}{N_0} \times \frac{2R_b}{B}$$

$$\text{SNR} = 2\frac{E_b}{N_0}.$$

The bandwidth used in the example link budget uses a bit rate equal to the bandwidth. This provides an approximation so the SNR approximates $\frac{E_b}{N_0}$ since SNR is easily measured. E_b/N_0 is used to find the probability of error from the curves shown in Chapter 6 (see Figure 6-6). The curves are generated using the mathematical error functions, $\text{erf}(x)$.

For example, using BPSK modulation, the probability of error, P_e, is equal to

$$P_e = 1 \times 10^{-8} \text{ for } \frac{E_b}{N_0} = 12 \text{ dB.}$$

This equation gives the probability of bit error for an ideal system. If this is too low, then the E_b/N_0 is increased. This can be accomplished by increasing the power out of the transmitter. This can also be accomplished by changing any of the link budget parameters discussed previously; for example, reducing the line loss. Either increasing E_b or decreasing N_0 will produce the same results.

For QPSK, since it has four phase states, it contains 2 bits of information for every phase state or symbol:

$$2^{\#\text{bits}} = \text{states, } 2^2 = 4$$

Symbol rate of QPSK = Bit rate of BPSK

Although it sends twice as many bits in the same bandwidth, it requires a higher S/N:

$$S/N = \frac{E_b}{N_0} \times 2BR/BW$$

If the symbol rate reduced by $\frac{1}{2}$ so that the bit rate is equal for both QPSK and BPSK, then both the bandwidth and noise are reduced by $\frac{1}{2}$ and the probability of error is approximately the same.

1.6.12 Received E_b/N_0 at the Detector

The received E_b/N_0 (in dB) is equal to the received SNR (in dB) for BPSK. For higher order modulations, the bandwidth will be larger than
the bit rate, so the SNR (in dB) = $X E_b/N_o$, where X relates to the order of modulation.

E_b/N_o is the critical parameter for the measurement of digital system performance. Once this has been determined for a digital receiver, it is compared to the required E_b/N_o to determine if it is adequate for proper system operation for a given probability of error.

1.6.13 Receiver Coding Gain

Another way to improve the performance of a digital communication system is to use codes that have the ability to correct bits that are in error. This is called error correction. The most common error correction is known as forward error correction (FEC). This type of correction uses code to correct bit errors without any feedback to the transmitter. Coding will be discussed in more detail in subsequent chapters. With FEC, the coding gain is the gain achieved by implementing certain codes to correct errors which is used to improve the BER, thus requiring a smaller E_b/N_o for a given probability of error. The coding gain, G_c, depends on the coding scheme used. For example, a Reed-Solomon code rate of 7/8 gives a coding gain of approximately 4.5 dB at a BER of 10^{-8}. Note that coding requires a trade-off, since adding the coding either increases the bandwidth by 8/7 or the bit rate is decreased by 7/8.

1.6.14 Required E_b/N_o

The required E_b/N_o for the link budget is

$$E_b/N_o(\text{req}) = E_b/N_o(\text{uncoded}) - G_c.$$

This is the minimum required E_b/N_o to enable the transceiver to operate correctly. The link budget parameters need to be set to ensure that this minimum E_b/N_o is present at the detector.

1.6.15 Link Budget Example

A typical link budget spreadsheet is shown in Table 1-3 which is used for calculating the link budget. This link budget tracks the power level and the noise level side by side so that the SNR can be calculated anywhere in the receiver. The altitude of an aircraft or satellite and its angle incident to the earth are used to compute the slant range, and the atmospheric loss is analyzed at the incident angle. The bit rate plus any additional bits for FEC determines the final noise bandwidth. A block diagram of a typical transmitter and receiver is shown in Figure 1-7. This block diagram refers
Table 1-3 Typical link budget analysis.

Link Budget Analysis:

<table>
<thead>
<tr>
<th>Slant Rng(km)</th>
<th>Freq.(GHz)</th>
<th>Power(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Constants...</td>
<td>92.65</td>
<td>3</td>
</tr>
<tr>
<td>Enter Inputs...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Inputs Gain/Loss (dB)</th>
<th>Sig.(dBm)</th>
<th>Noise(dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans. Pwr(dBm)=</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans. line loss =</td>
<td>-1</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Other(switches) =</td>
<td>-2</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Trans Ant Gain =</td>
<td>10</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Ant. Losses*=</td>
<td>-2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>ERP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td>Free Space Loss=</td>
<td>-141.32</td>
<td>-106.32</td>
</tr>
<tr>
<td>Rain Loss =</td>
<td>-2.00</td>
<td>-108.32</td>
<td></td>
</tr>
<tr>
<td>Cloud Loss =</td>
<td>-1.00</td>
<td>-109.32</td>
<td></td>
</tr>
<tr>
<td>Atm loss(etc) =</td>
<td>-0.50</td>
<td>-109.82</td>
<td></td>
</tr>
<tr>
<td>Multipath Loss=</td>
<td>-2.00</td>
<td>-111.82</td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td>RF BW(MHz)**</td>
<td>100.00</td>
<td>-94.00</td>
</tr>
<tr>
<td>Ant. losses =</td>
<td>-2.00</td>
<td>-113.82</td>
<td></td>
</tr>
<tr>
<td>Rx Ant Gain =</td>
<td>10.00</td>
<td>-103.82</td>
<td></td>
</tr>
<tr>
<td>Ant. ohmic loss =</td>
<td>-2.00</td>
<td>-105.82</td>
<td></td>
</tr>
<tr>
<td>Other(switches) =</td>
<td>-1.00</td>
<td>-106.82</td>
<td></td>
</tr>
<tr>
<td>Rec. Line loss =</td>
<td>-2.00</td>
<td>-108.82</td>
<td></td>
</tr>
<tr>
<td>LNA Noise Fig. =</td>
<td>3.00</td>
<td>-91.00</td>
<td></td>
</tr>
<tr>
<td>LNA Gain =</td>
<td>25.00</td>
<td>-83.82</td>
<td></td>
</tr>
<tr>
<td>NF Deviation =</td>
<td>0.10</td>
<td>-65.90</td>
<td></td>
</tr>
</tbody>
</table>

Conversions:

<table>
<thead>
<tr>
<th>Slant Rng:</th>
<th>Enter Range</th>
<th>Kilometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mi</td>
<td>3.218</td>
<td></td>
</tr>
<tr>
<td>50 nmi</td>
<td>92.65</td>
<td></td>
</tr>
<tr>
<td>5280 ft</td>
<td>1.61</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trans. Pwr:</th>
<th>Enter Power</th>
<th>Pwr(watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 dBm</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trans. Ant Gain:</th>
<th>Diameter (inches)</th>
<th>1/2 pwr beamwidth=</th>
<th>Bm Meth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Gain (dB)</td>
<td>24</td>
<td>11</td>
<td>23.01</td>
</tr>
<tr>
<td>Parabolic Dish</td>
<td>22.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = (efficiency) =</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rx Ant. Gain:</th>
<th>Diameter(inches)</th>
<th>1/2 pwr beamwidth=</th>
<th>Bm Meth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Gain (dB)</td>
<td>24</td>
<td>11</td>
<td>23.01</td>
</tr>
<tr>
<td>Parabolic Dish</td>
<td>22.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = (efficiency) =</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculated Constants:</th>
<th>Prob.of Err Eb/No(dB)</th>
<th>Eb/No</th>
<th>Pe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda =</td>
<td>0.1 meters</td>
<td>Coh.PSK</td>
<td>10.53</td>
</tr>
<tr>
<td>Lambda =</td>
<td>3.94 inches</td>
<td>Coh.FSK</td>
<td>13.54</td>
</tr>
<tr>
<td>Free Space Lo -141.32 dB</td>
<td>Non.(DPSK)</td>
<td>11.18</td>
<td>13.122</td>
</tr>
<tr>
<td>Boltzman's = 1.4E-23</td>
<td>Non.FSK</td>
<td>14.19</td>
<td>26.24219</td>
</tr>
<tr>
<td>LNA Gain =</td>
<td>10.53</td>
<td>11.29796</td>
<td>1.00E-06</td>
</tr>
</tbody>
</table>
Table 1-3 Typical link budget analysis. (Continued)

<table>
<thead>
<tr>
<th>LNA levels =</th>
<th>-83.82</th>
<th>-65.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver Gain =</td>
<td>60.00</td>
<td>-23.82</td>
</tr>
<tr>
<td>Imp. Loss</td>
<td>-4.00</td>
<td>-27.82</td>
</tr>
<tr>
<td>Despread BW**</td>
<td>10.00</td>
<td>-15.90</td>
</tr>
<tr>
<td>PG 10log# of bits</td>
<td>30.00</td>
<td>2.18</td>
</tr>
<tr>
<td>Spreading Loss =</td>
<td>-2.00</td>
<td>0.18</td>
</tr>
<tr>
<td>LNA Gain:</td>
<td>25.00 dB</td>
<td>316.23</td>
</tr>
</tbody>
</table>

Imp. Loss =	-4.00	-27.82
LNA NF:	3.00 dB	2.00
Det. Levels =	0.18	-15.90
Res. Doppler	0.5	0.5
Det. Peak offset	0.5	0.5
Det. Levels =	0.18	-15.90
S/N =	16.08	
Req. Eb/No	12 Pe=10exp-8	
Req. Eb/No	4.00	8.00
Coding Gain =	4.00	8.00
Eb/No Margin =	8.08	
Receiver Noise Figure:	8.00 dB	6.31 Factor
Losses, Post Preamp:	10.00 dB	10.00
LNA Gain:	25.00 dB	316.23
LNA NF:	3.00 dB	2.00
NF Final:	3.10 dB	2.04
NF Deviation:	0.10	

* Ant. losses

Lpointing (misalign)	0.5	0.5
Lpolarization	0.5	0.5
Lradome loss	0	0
Lconscan(xover)=	0	0
Lloc(refract, L-angle)=	1	1

** Enter the actual bandwidths in MHz in the column even though they are not gains and losses. The noise power is adjusted accordingly.
Figure 1-7 A data link system for link budget analysis.
back to the link analysis that was performed in accordance with the typical link budget analysis (see Table 1-3).

1.6.16 Spread Spectrum Systems

Spread spectrum is a technique for using more bandwidth than is required to send digital data. This is generally accomplished by using a faster code sequence and combining it with the digital data sequence before modulation. Spread spectrum is used mainly to mitigate jamming signals. In order to complete the link analysis for a spread spectrum system, spreading losses and process gain need to be included in the link budget.

1.6.17 Receiver Spreading Losses

If spread spectrum is used, then the signal level is modified by the spreading losses associated with nonideal spreading and despreading techniques, which reduce the received signal power (sometimes referred to as match filter loss). This is an additional loss separate from the implementation loss, since it deals with the spreading and despreading of a spread spectrum system. Also, since many digital systems are not spread spectrum systems, the loss is kept separate for clarity. The spread spectrum loss is generally around -1 to -2 dB and varies from system to system. Note that this is not included in a nonspread spectrum system. The losses are specified as follows:

$$L_{ss} = \text{spread spectrum loss} \ (-1 \text{ to } -2 \text{ dB}).$$

The value of the spread spectrum loss is dependent on the type of spread spectrum used and the receiver design for spreading and despreading. This loss is a direct attenuation of the signal: a 1 dB loss equals a 1 dB loss in the link analysis.

1.6.18 Process Gain

One of the main reasons for using spread spectrum is the ability of this type of system to reject other signals or jammers. This ability is called process gain (G_p). The process gain minus spreading losses provides the ideal jamming margin for the receiver. The jamming margin is the amount of extra power, referenced to the desired signal, which the jammer must transmit in order to jam the receiver:

$$J_m = G_p + L_{ss}.$$
1.6.19 Received Power for Establishing the SNR for a Spread Spectrum System

The detected power, \(P_d \) or \(S \) (in dB), that is used to calculate the final SNR for the analysis of spread spectrum systems includes the spreading loss, \(L_{ss} \):

\[
P_d = P_s + L_i + L_{ss} + G_{receiver} = S \text{ (in dB)}
\]

where

- \(P_s \) = power to the LNA (in dBm),
- \(L_{ss} \) = spreading losses,
- \(G_{receiver} \) = the receiver gain.

The receiver gain is applied to both the signal and the noise, and is cancelled out during the SNR calculation. Therefore, carrying the receiver gain through the rest of the analysis is optional.

1.7 Summary

The link budget provides a means to design a transceiver and to perform the necessary analysis to ensure that the design is optimal for the given set of requirements. The link budget provides a way to easily make system trade-offs and to ensure that the transceiver operates properly over the required range. Once known or specified parameters are entered, the link budget is used to solve for the unknown parameters. If there is more than one unknown parameter, then the trade-offs need to be considered. The link budget is continually reworked, including the trade-offs, to obtain the best system design for the link. Generally a spreadsheet is used for ease of changing the values of the parameters and monitoring the effects of the change (see Table 1-3).

References

Problems

1. Show that a specification of 0 dBm ± 2 dBm is an impossible statement and write a correct statement for it.

2. Solve for the total signal level through the receiver in Figure 1-P2 using milliwatts to obtain the answer, then solve for the output in dBm for the above receiver. Compare your answers. Note: Try the dB method without using a calculator.

![Figure 1-P2](image)

Figure 1-P2 A receiver diagram.

3. An oscillator generates a center frequency of 1 GHz at 1 mW. The largest spurious response or unwanted signal is at a power level of 0.01 mW. How would you specify the spurious response in dBc? What would the power be in milliwatts for a spur at −40 dBc?

4. A system has been operational for the past 3 years. A need arose to place a limiter in the path between the antenna and the LNA to avoid overload from a newly built high-power transmitter. The limiter has 1.5 dB of loss. How will this affect the ability to receive low-level signals? What can you do to overcome the loss?

5. What is the diameter of a parabolic antenna operating at 5 GHz, at an efficiency of 0.5 and a gain of 30 dBi?

6. What is the free-space attenuation for the system in Problem 5 with a range of 10 nautical miles?

7. What is the noise level out of the LNA given that the bandwidth is 10 MHz and the LNA NF is 3 dB with $T_o = T_s$ at room temperature?

8. What is the NF of the receiver, given that the LNA has an NF of 3 dB, a gain of 10 dB, a second amplifier after the LNA with a gain of 20 dB and an NF of 10 dB, and there is a loss of 5 dB between the amplifiers?
The Transmitter

The transmitter is responsible for formatting, encoding, modulating, and upconverting the data that is transmitted over the link using the required power output according to the link budget analysis. The transmitter section is also responsible for spreading the signal using various spread spectrum techniques. Several digital modulation waveforms are discussed in this chapter. The primary types of digital modulation using direct sequence methods to phase modulate a carrier are discussed in detail, including diagrams and possible design solutions. A block diagram showing the basic components of a typical transmitter is shown in Figure 2-1.

![Block diagram of a basic transmitter.](image-url)

Figure 2-1 A block diagram of a basic transmitter.
2.1 Basic Functions of the Transmitter

The basic functions of the transmitter are the following:

- Provide radio frequency (RF) power to an antenna which delivers that power into space.
- Incorporate a transmit/receive (T/R) control (or circulator) to allow the same antenna to be used for both the transmitter and the receiver.
- Provide an RF power amplifier, which is the power for the link budget.
- Utilize upconversion to select a carrier for the modulated signal which provides a frequency of operation in order to use a practical, smaller antenna.
- Provide data modulation, which puts data on the carrier. This can be accomplished using various types of modulation techniques, including spread spectrum and coding.

2.1.1 Antenna

The antenna receives the RF signal from the power amplifier and translates this RF power into electromagnetic waves so that the signal can be propagated through space. The antenna is dependent on the frequency of the RF and the specified operational requirements. The proper design of the antenna ensures that the maximum signal power is sent out in the direction of the receiver or in the required service volume. The design of the antenna is a critical parameter in the link budget and must be optimized to produce the best performance for a given size and cost.

The gain of the antenna improves the link budget on a one-for-one basis; that is, for every dB of gain the antenna exhibits, the link is improved by a dB. Therefore, careful design of the antenna can reduce the power output required from the power amplifier, which reduces the cost and thermal dissipation of the system. The frequency, amount of gain required, and size are factors in determining the type of antenna to use. Parabolic dishes are frequently used at microwave frequencies. The gain of the parabolic dish was calculated in the link budget section of Chapter 1. The antenna
provides gain in the direction of the beam to reduce power requirements and also to reduce the amount of interference received, which is called selective jamming reduction. The gain of the antenna is usually expressed in dBi, which is the gain in dB referenced to what an ideal isotropic radiator antenna would produce. In other words, this is the amount of amplifier gain that would be delivered to an isotropic radiator antenna to transmit the same amount of power in the same direction as a directional antenna. Even a vertical dipole antenna provides gain in the direction of the receiver, which is typically 2.1 dBi.

2.1.2 Transmit/Receive Control

In order to reduce the number of antennas for a transceiver system, which ultimately reduces cost, the same antenna is generally used for both the transmitter and the receiver at each location. If the same antenna is going to be used for the system, a device is required to prevent the transmitter from interfering with or damaging the receiver. This device can be a duplexer or diplexer, T/R switch, circulator, or some combination of these devices. The method chosen must provide the necessary isolation between the transmitter circuitry and the receiver circuitry and prevent damage to the receiver during transmission. The transmitted signal is passed through this device and out to the antenna with adequate isolation from the receiver. The received signal is passed through this device from the antenna to the receiver with adequate isolation from the transmitter.

Duplexers and diplexers are often misunderstood. A duplexer is a device that provides a passband response to the transmitted signal and a notch filter at the receiver frequency. Therefore the transmitted output is passed through the duplexer to the antenna, but the transmitted signal at the receiver frequency is attenuated by the notch filter. Generally the receiver frequency and the transmitter frequency are in the same band, but separated far enough in frequency so that the bandpass filter and the notch filter can be separated. A diplexer is basically two bandpass filters, one tuned to the transmitter frequency band and the other tuned to the receiver frequency band. Diplexers are generally used to split multiple frequencies, such as two RF frequency bands in the receiver, so that the same antenna can be used to receive two different frequency bands. For example, in the amateur radio bands, a single antenna can be used to receive the 2 m band and the 70 cm band because a diplexer can separate these bands using two bandpass filters in the receiver.
2.1.3 Power Amplifier

The power amplifier is used to provide the necessary power output from
the transmitter to satisfy the link budget for the receiver. The general clas-
sifications for power amplifiers are

- Class A: Power is transmitted all of the time; used for linear operation.
- Class A/B: Power is transmitted somewhere in between Class A and
 Class B. This is a trade-off between the linear operation of a Class A
 amplifier and the efficiency of a Class B amplifier.
- Class B: The conduction angle for Class B is 180° or half the time. A
 classic implementation of Class B amplifiers for a linear system is push-
 pull, that is, one stage is on and the other stage is off. The only drawback
 of this configuration is crossover distortion when transitioning from one
 device to the other. Class B amplifiers are more efficient than Class A
 and A/B amplifiers, but they are more nonlinear.
- Class C: Power is transmitted less than half of the time. This amplifier
 class is more efficient than the previous classes, however, it is more
 nonlinear. Class C amplifiers may present a potential problem for some
 types of digital modulation techniques.

There are many other classifications of power amplifiers, depending on
their design, function, and application; however, these are the basic power
amplifiers used for communications.

2.1.4 Upconversion

The information that is to be transmitted is made up of low frequencies,
such as voice or a digital data stream. The low frequencies are mixed or
upconverted to higher frequencies before the signal is radiated out of the
antenna. One reason for using higher frequencies for radiation is the size of
the antenna. For example, many antenna designs require element lengths
of λ/2, where λ becomes rather large with low frequencies (λ = c/f). Using
a frequency of 10 kHz, an element length of λ/2 would equal 15,000 m.
Using a frequency of 1 GHz, an element length of λ/2 would equal 0.15 m. It
would be impractical to have a portable communications transceiver with
an antenna length of 15,000 m.

Another reason for using higher frequencies is band congestion. The
lower usable frequency bands are overcrowded. Operating frequencies con-
tinue to increase in hopes that these bands will be less crowded. Regardless
of the reason, the main function of the transmitter is to upconvert the signal to a usable radiating frequency.

A local oscillator (LO) is used to translate the lower frequency band to a higher frequency band for transmission. For example, a single lower frequency is mixed or multiplied by a higher frequency which results in the sum and difference of the two frequencies as shown:

$$\cos(\omega_c t + \phi_c) \cos(\omega_l t + \phi_l) = \frac{1}{2} \cos[(\omega_c - \omega_l) t + \phi_c - \phi_l] + \frac{1}{2} \cos[(\omega_c + \omega_l) t + \phi_c + \phi_l],$$

where

- $\omega_c =$ carrier or higher frequency,
- $\phi_c =$ phase of the carrier,
- $\omega_l =$ the lower frequency containing the data,
- $\phi_l =$ phase of the lower frequency,
- $t =$ time.

A diagram of the results of this mixing process is shown in Figure 2-2.

![Figure 2-2](image)

Figure 2-2 Ideal frequency spectrum of a CW modulating signal mixed with a CW carrier.

This is an ideal case that ignores any of the harmonics of the two input frequencies and only uses one low frequency (usually the data include a band of frequencies). A bandpass filter is used at the output to select either the sum term or the difference term. The sum term is selected in this example. A bandpass filter is centered at $\cos[(\omega_c + \omega_l) t + \phi_c + \phi_l]$ with a roll-off sharp enough to virtually eliminate the term $\cos[(\omega_c - \omega_l) t + \phi_c - \phi_l]$, with the result shown below:

$$\frac{1}{2} \cos[(\omega_c + \omega_l) t + \phi_c].$$
where
\[\varphi_s = \text{sum of the phases}, \]
\[\omega_c + \omega_f = \text{sum of the frequencies}. \]

2.1.5 Sum and Difference Frequencies Generated in the Upconversion Process

An LO is used to upconvert lower frequencies to higher frequencies for transmitting out the antenna. During this upconversion process, two frequency bands are produced in the ideal case: the sum of the LO frequency and the input frequencies, and the difference of the LO frequency and the input frequencies. One of these bands of frequencies must be filtered out in order to recover the signal at the receiver. In addition, since the same data are contained in both frequency bands, more power is required to transmit both sum and difference channels, and there is more chance of generating interference to other uses by transmitting both bands. If both bands are allowed to be transmitted, there is a possibility that the phases will align at the receiver which will cancel the desired signal.

For example, suppose that the signal to be transmitted is defined as
\[A \cos(\omega_s t) \]
and the carrier frequency is defined as
\[B \cos(\omega_c t). \]
The output of the upconversion process is found by multiplying the two signals:
\[A \cos(\omega_s t) \times B \cos(\omega_c t) = AB/2 \cos(\omega_s + \omega_c) t + AB/2 \cos(\omega_s - \omega_c) t. \]

Generally, one of the above terms is filtered out. If both of these terms are allowed to be transmitted, a worst-case phase situation at the receiver would be when the LO or carrier frequency \(\omega_c \) is 90° out of phase
\[C \cos(\omega_c t + 90) = C \sin(\omega_c t) \]
with the incoming signal:
\[[AB/2 \cos(\omega_s + \omega_c) t + AB/2 \cos(\omega_s - \omega_c) t] \]
\[= ABC/4 \sin(\omega_s + \omega_c) t + \sin(\omega_s - \omega_c) t] - ABC/4 \sin(-\omega_s + \omega_c) t + \sin(-\omega_s - \omega_c) t \]
\[= ABC/4 \sin(\omega_s + 2\omega_c) t + \sin(\omega_s) t - ABC/4 \sin(\omega_s) t + \sin(\omega_s - 2\omega_c) t \]
\[= ABC/4 \sin(\omega_s + 2\omega_c) t - \sin(\omega_s - 2\omega_c) t]. \]

The results show that only the sum of \(\omega_s + 2\omega_c \) and the difference of \(\omega_s - 2\omega_c \) frequencies were detected by the receiver. The frequency \(\omega_s \) was not retrieved and the output was degraded substantially. This demonstrates the requirement to filter out one of the unwanted sidebands during transmission.
When one of the bands is filtered at the transmitter, for example, the sum band, and using the worst-case phase situation as before yields

\[
\frac{AB}{2} \cos(\omega_s - \omega_c) t \left[C \sin(\omega_c) t \right] \\
= \frac{ABC}{4} \sin(\omega_s - \omega_c) t - \frac{ABC}{4} \sin(\omega_s - 2\omega_c) t.
\]

The results of filtering the sum band with this worst-case scenario shows that the signal waveform \(\omega_s \) is retrieved along with the difference of \(\omega_s - 2\omega_c \). A low-pass filter will eliminate the second term, since the carrier frequency is generally much higher than the signal frequency, giving only the desired signal output of \(\frac{ABC}{4} \sin(\omega_s) t \).

Another way to eliminate the unwanted band in the transmitter is to use an image-reject mixer. The image-reject mixer quadrature upconverts the signal into two paths, an in-phase path called the I channel and a path that is in quadrature or \(-90^\circ\) out of phase called the Q channel:

I-channel output = \(\cos \omega_s t \ast \cos \omega_c t = \frac{1}{2} \cos(\omega_s - \omega_c) t + \frac{1}{2} \cos(\omega_s + \omega_c) t \)

Q-channel output = \(\cos \omega_s t \ast \cos(\omega_c t - 90) = \frac{1}{2} \cos((\omega_s - \omega_c) t + 90) \)

\[+ \frac{1}{2} \cos((\omega_s + \omega_c) t - 90). \]

The I-channel output is then phase shifted by \(-90^\circ\) and the I and Q channels are then summed together, eliminating the difference band as follows:

I-channel phase shifted = \(\frac{1}{2} \cos((\omega_s - \omega_c) t - 90) + \frac{1}{2} \cos((\omega_s + \omega_c) t - 90) \)

\(I + Q = \frac{1}{2} \cos((\omega_s - \omega_c) t - 90) + \frac{1}{2} \cos((\omega_s + \omega_c) t - 90) \)

\[+ \frac{1}{2} \cos((\omega_s - \omega_c) t + 90) \]

\[+ \frac{1}{2} \cos((\omega_s + \omega_c) t - 90) = \cos((\omega_s + \omega_c) t - 90). \]

Therefore only the sum of the frequency band is transmitted, thus eliminating the problem on the receiver side.

2.2 Voltage Standing Wave Ratio

The voltage standing wave ratio (VSWR) is caused by a mismatch in the impedance between devices. It determines how much power is reflected back from the load that is not matched to the source. Generally this is
specified using a 50 ohm system; the VSWR is the measurement used to indicate the amount of impedance mismatch. The amount of power that is reflected back to the source is a loss in the signal level, which is a 1 dB for 1 dB loss in the link analysis.

In the link analysis, the power amplifier is chosen along with the gain of the antenna to meet the slant range of the data link. The power amplifier is generally a high-cost item in the transceiver and therefore careful transceiver design to minimize losses in the link analysis will reduce the power requirement of the power amplifier, thus reducing the overall cost of the transceiver. Therefore designing the power amplifier and the antenna to obtain the best impedance match or the lowest VSWR will help to minimize the loss.

The VSWR defines a standing wave that is generated on the line between the power amplifier and the antenna. The ratio of the minimum and maximum voltages measured along this line is the VSWR. For example, a VSWR of 2:1 defines a mismatch where the maximum voltage is twice the minimum voltage on the line. The first number defines the maximum voltage and the second is the normalized minimum. The minimum is defined as one and the maximum is the ratio of the two. The match between the power amplifier and the antenna is often around 2:1, depending on the bandwidth of the antenna.

The standing wave is caused by reflections of the signal, due to a mismatch in the load, that are returned along the transmission line. The reflections are added by superposition, causing destructive and constructive interference with the incidence wave depending on the phase relationship between the incidence wave and the reflected wave. This results in voltages that are larger and smaller on points along the line. The main problem with mismatch and a high VSWR is that some of the power is lost when it is reflected back to the source and thus is not delivered to the load or antenna. The standing wave is minimized by making the impedances equal so that there are virtually no reflections, which produces a VSWR of 1:1.

2.2.1 Maximum Power Transfer Principle

The maximum power transfer principle states that for maximum power transfer to a load, the load impedance should be equal to the source impedance. For example, if the source impedance is equal to 50 ohms, then the load impedance should be equal to 50 ohms. This produces a VSWR of 1:1, which means that no power is reflected back to the source; it is all delivered to the load (see Figure 2-3).
The maximum power transfer to the load is $R_2 = 50$ ohms.

Figure 2-3 Maximum power transfer to the load with a given source impedance.

However, the reverse is not true. If the impedance of the load is given, the source impedance is not chosen as equal to the load but is selected to minimal, or zero. Therefore, if the load impedance is given as 50 ohms, the source impedance is not selected as 50 ohms for maximum power transfer to the load, but is chosen as 0 ohms. If the source is zero, then there is no loss in the source resistance (see Figure 2-4). This applies especially for operational amplifiers (op amps), whose source impedance is low, around 10 ohms.

Maximum power transfer to the load is when $R_1 = 0$ ohms.

Figure 2-4 Maximum power transfer to the load with a given load impedance.
2.3 Digital Communications

Digital communications is becoming the standard for nearly all communications systems. The advantages of digital communications are as follows:

- Perfect reconstruction of the transmitted digital waveform assuming no bit errors. After digitizing the analog signal, the digital bit stream can be reconstructed at the receiver, and if there are no bit errors, it is an exact replica of what was sent by the transmitter. There is no gradual buildup as there is in analog systems, therefore the quality of the signal is excellent until bit errors occur in the digital waveform (see Figure 2-5).

- Smaller size due to custom ASICs and programmable chips such as digital signal processors (DSPs) and field programmable gate arrays (FPGAs).

- Software defined radios (SDRs) utilize the fact that these DSPs and FPGAs can be programmed to change the modulation techniques to provide highly diverse radios that can be used for multiple applications.

Figure 2-5 Digital versus analog communications.
and networking. Basically it is like having multiple radios in one unit that is controlled by software.

2.3.1 Digital versus Analog Communications

As mentioned before, digital transmissions can be perfectly reconstructed at the receiver, assuming there are no bit errors. However, when analog signals, such as voice, are used in a digital communications systems, the analog signal needs to be digitized. This becomes a source of error, since this is only a digital approximation of the analog signal. With oversampling, this error becomes very small.

For an analog communications system, the actual analog signal modulates the carrier and the analog signal is sent to the receiver. However, as noise and external signals distort the analog signal, it slowly degrades until it is undetectable or until it reaches the minimum detectable signal (MDS) (see Figure 2-5).

The advantage of a digital signal is that as it degrades, the quality of the signal is not affected, assuming the receiver can still detect the bits that were sent from the transmitter with no bit errors. Therefore it does not matter how noisy the signal is coming into the receiver, if the bits can be detected without bit errors, or the errors can be corrected, the quality of the signal does not change or sound noisy.

An example of this is the comparison between an analog cell phone and a digital cell phone. An analog cell phone continues to get noisier until it is difficult to discern the voice because of so much noise, whereas a digital phone is perfectly clear until it starts getting bit errors, which results in dropout of the voice or missing parts of the conversation.

2.3.2 Baseband Modulation of Digital and Analog Systems

Modulation is a method used to transmit information by attaching it to a higher frequency carrier in order to transmit it to the receiver using a small, practical antenna. For a typical analog system, the analog signal modulates the carrier directly by using either amplitude modulation (AM) or frequency modulation (FM) (see Figure 2-6). The output of the modulation is a higher frequency signal that can be easily transmitted using a practical small antenna. For a typical digital modulation system, the analog signal (e.g., voice) is digitized by using a device known as an analog-to-digital converter (ADC). The ADC takes samples of the analog input and creates a digital pattern of “1”s and “0”s representing the value of the analog sample. This digital data stream is used to modulate the carrier frequency by shifting either the phase or frequency by the value of the digital signal (see Figure 2-6).
2.3.3 Software Programmable Radios and Cognitive Radios

Software programmable radios are often referred to as SDRs. A big advantage of digital communications is that the modulation and demodulation can be accomplished using software. This makes the design much more flexible since this technique is used to change to different modulation schemes. The principle is that the software is programmed in both the transmitter and the receiver to provide multiple modulation schemes which can be selected on a real-time basis. If there are multiple transmitters with different modulation types, the receiver can be programmed to accept these different modulation types by changing the software. An example of this is if a data link is designed and built to transmit and receive a waveform such as amplitude modulation minimum shift keying (AM-MSK). By simply changing the software or changing the software load of either a DSP or FPGA or both, this modulation can change to differential 8-level phase-shift keying (D8PSK). This was accomplished in setting the standards for special category 1 (SCAT-1) landing systems. The software can be either changed at the factory, or for a real-time system, the software loads can reside in memory on the data link and the desired software can be loaded on command of the data link.

The hardware uses DSPs, FPGAs, or both. FPGAs are generally used for high-speed processing, while DSPs are generally used for low-speed processing. Many data link systems today use both FPGAs and DSPs and partition the functionality between these parts. This can be used to optimize the function of the data link. A basic software defined radio is shown in Figure 2-7.
Cognitive radios are an extension of SDRs. They use smart radios that can sense the present environment for existing radios with given modulations and data links and program the transmitter, receiver, or both for interoperability. In addition, cognitive radios can automatically determine which bands or parts of bands have the minimum amount of noise, jammers, or other users and utilize this information to determine the best place for operation of the cognitive data link. This maximizes the number of users by optimizing the operation of the data link with respect to frequency, modulation, time, and space, providing the best noise- and jammer-free operation.

2.4 Digital Modulation

The most common form of digital modulation is changing the phase of the carrier frequency in accordance with the digital signal that is being sent. The basic form of digital communication is shown in Figure 2-8. This shows the carrier frequency and the digital data being fed into a modulator. The modulator is a BPSK modulator and changes the phase between 0° and 180° according to the digital data being sent. The demodulator uses the same carrier unmodulated, which strips off the carrier of the BPSK-modulated signal, thus retrieving the digital data.
2.4.1 Phase-Shift Keying

Phase-shift keying is a type of modulation where the phase of the carrier is shifted to different phase states by discrete steps using a digital sequence. This digital sequence can be either the digitized data or a combination of digitized data and a spread spectrum sequence. There are many different levels and types of PSK; only basic modulation methods are discussed here. However, the principles can be extended to higher order PSK modulations.

2.4.2 Binary Phase-Shift Keying

The basic PSK is binary phase-shift keying (BPSK) (see Figure 2-9). BPSK is defined as shifting the carrier 0° or 180° in phase, depending on the digital waveform. For example, a binary “0” gives 0° phase of the carrier, and a binary “1” shifts the carrier by 180°. To produce the digital waveform, the data or information signal is digitized, encoded, and sent out in a serial bit stream (if not already). The end result is a serial modulating digital waveform representing the data to be transmitted. This digital output contains 0 and 1 and often needs to be changed to ±1 to directly modulate the carrier frequency in a typical mixer application. However, certain forms of hardware can bypass this step and modulate the mixer directly. The output of the mixer is a BPSK modulated carrier signal that is transmitted and sent over to the receiver for demodulation and detection.

A high-speed pseudo-noise (PN) code and modulo-2 adder/exclusive-or functions are added to the basic BPSK modulator to produce a spread spectrum waveform (see Figure 2-10). The high-speed code generates a
Figure 2-9 BPSK generator.

Figure 2-10 BPSK spread spectrum generator.
wider spectrum than the data spectrum needed for communications, which is known as a spread spectrum. Further discussion of spread spectrum techniques to mitigate jamming signals is presented later in this book.

Applying minus voltage to an actual RF mixer reverses the current through the balun of the mixer and causes the current to flow in the opposite direction, creating a net 180° phase shift of the carrier. Therefore the carrier is phase shifted between 0° and 180° depending on the input waveform. A simple way of generating BPSK spread spectrum is shown in Figure 2-10. The LO is modulated by this digital sequence producing a 0° or 180° phase shift on the output of the mixer. Other devices such as phase modulators and phase shifters can create the same waveform as long as one digital level compared to the other digital level creates a 180° phase difference in the carrier output.

2.4.3 Differential Phase-Shift Keying

The BPSK waveform above can be sent out as absolute phase (i.e., a 0° phase shift is a “1” and a 180° phase shift is a “0”). This type of system is known as a coherent system or coherent BPSK. Another way to perform this function is to use differential phase-shift keying (DPSK), which generates and detects a change of phase. A change of phase (0° to 180° or 180° to 0°) represents a “1” and no change (0° to 0° or 180° to 180°) represents a “0.” This scheme is easier to detect because the absolute phase does not need to be determined, just the change of phase is monitored. The differential mode can be applied to various phase shifting schemes and higher order phase shift schemes. DPSK results in a degradation of the signal, compared to using the absolute phase or coherent BPSK. This can be observed when evaluating the E_b/N_0 versus probability of error curves. However, it is much easier to demodulate and detect the data, and generally less costly due to the demands of keeping the phase constant over a longer period of time. Note that differential techniques can be applied in higher order PSK systems such as differential quadrature phase-shift keying (DQPSK) and differential 8-level phase-shift keying (D8PSK).

2.4.4 Quadrature (Quaternary) Phase-Shift Keying

Quadrature phase-shift keying (QPSK) is generated by quadrature phase shifting the LO so that four possible phase states are produced at the output. One method of producing these phasors is by using two channels: one channel that contains an LO that is in phase and the output of the mixer is BPSK modulated to produce 0° or 180°, and the other channel that contains the same LO that is shifted by 90° so that the output of the mixer is BPSK modulated to produce 90° or 270°. These two channels
are then combined to produce the four phase states (see Figure 2-11). The two BPSK systems are summed together, which gives four possible resultant phasors—45°, 135°, −135°, and −45°—which are all in quadrature, as shown in Figure 2-11. Since the digital transitions occur at the same time, changes between any four resultant phasors can occur.

![QPSK generator diagram](image)

Figure 2-11 QPSK generator.

Depending on the input of both bit streams, the phase of the resultant can be at any of the four possible phases. For example, if both bit streams are 0, then the phasor would be 45°. If both bit streams changed to 1, then the phasor would be at −135°, giving a change of carrier phase of 180°. If only the first channel changes to 1, then the phasor would be at −45°, giving a
change of 90°. Therefore the four possible phase states are 45°, 135°, −135°, or −45°. The phasor diagram can be rotated, since it is continually rotating in time and only a snapshot is shown, and then the phasors would be at 0°, 90°, −90°, and 180° for QPSK generation.

Usually the LO contains the 90° phase shift that is used to provide the two quadrature channels of the BPSK phasors instead of trying to provide the 90° phase shift of the actual binary input. Either way would provide the 90° quadrature phase rotation that is required. However, quadrature rotation of the binary input requires phase shifting all of the frequency components by 90°. This requires a more sophisticated and expensive phase shifter that is broadband. Shifting only the carrier to produce the quadrature channels requires a phase shift at one frequency, which is much simpler to build. In fact, in the latter case, a longer piece of cable cut to the right length can provide this 90° quadrature phase shift.

2.4.5 Offset QPSK

Another type of QPSK is referred to as offset QPSK (OQPSK) or staggered QPSK (SQPSK). This configuration is identical to QPSK except that one of the digital sequences is delayed by a half-cycle so that the phase shift only occurs on one mixer at a time. Therefore the summation of the phasors can only result in a maximum phase shift of ±90° and can only change to adjacent phasors (no 180° phase shift is possible). The phasor diagram in Figure 2-12 is identical to Figure 2-11, except no 180° phase shift is possible. This prevents zero-amplitude crossover points and provides smoother transitions with less chance of error, reducing the AM effects common to both BPSK and QPSK. The zero crossover points mean that during the transition from 0° to 180°, the amplitude of the phasor goes to zero amplitude. Therefore, since the hardware does not allow for an instantaneous change in phase, the changing amplitude produces AM. OQPSK only changes 90° so that the phasor only goes through a −3 dB amplitude degradation point. This reduces the AM tremendously. Figure 2-12 shows a simple way of generating OQPSK. The only difference between this and the QPSK generator is the 1/2-bit delay in one of the bit streams. This prevents the 180° phase shift present in the QPSK waveform.

2.4.6 Higher Order PSK

The above analysis can be extended for higher order PSK systems. The same principles apply, only they are extended for additional phase states and phase shifts.
Direct sequence waveforms are used extensively for digital modulation systems. BPSK is the simplest form of PSK, shifting the carrier 0° or 180°. QPSK uses two BPSK systems, one in quadrature, to achieve four phase shifts: 0°, 90°, -90°, and 180°. OQPSK is used to minimize AM and is identical to QPSK with the phase transitions occurring at ½-bit intervals and at different times for each of the BPSK channels. This provides phase shifts of 0°, 90°, and -90° degrees, and eliminates the 180° phase shift. Higher order PSK systems can be analyzed much the same way, only with more phase states and phase transitions. However, the more phase shift possibilities, the harder it is to detect and resolve the different phase states. Therefore there is a practical limit on how many phase states can be sent for good detection. This limit seems to grow with better detection technology, but caution must be observed in how many phase states can be sent out reliably for practical implementation.

Figure 2-12 OQPSK generator.
2.4.7 Variations in PSK Schemes

There are many other PSK configurations that are in use today and there will be other types of modulating schemes in the future. One of the main concerns with using PSK modulators is the AM that is inherent when phase states are changed. For example, BPSK switches from 0° to 180°. Since this is not instantaneous, due to bandwidth constraints, the phasor passes through zero amplitude in the process. The more band-limiting, the more AM there is in the resultant waveform. Various schemes have been developed to reduce this AM problem. For example, OQPSK only allows a maximum phase shift of 90°, so that the AM problem is significantly reduced. Also, minimum shift keying (MSK) is used to smooth out the phase transitions, which further reduces the AM problem and makes the transition continuous. Continuous phase PSK (CP-PSK), also referred to as constant envelop modulation, is another modulation scheme that prevents AM, where the phase shifts are continuous around the phasor diagram with no change in amplitude. Other variations in PSK schemes are listed on the following pages.

2.4.8 π/4 Differential QPSK

The π/4 DQPSK is a modulating scheme that encodes 2 bits of data as ±45° and ±135° phase shifts which are in quadrature. The next phase shift will be from that resultant phasor. Therefore, if the first phase shift is +135° and the second phase shift is +135°, the resultant phasor’s absolute phase would be at 270°. Because it is differential, once the phase shift occurs, the next phase shift starts at the last phase state. Then, according to the data bits, it shifts the phase either ±45° or ±135°. Another example: if a +45° shift occurs referenced to the last phasor sent, then the bits that are sent equal 0,0. Proceeding with the other phase shifts, a −45° shift is 0,1, a +135° shift is 1,0, and a −135° shift is 1,1, as shown in Figure 2-13. The shifts for the next bits sent start from the last phasor measured. Over time this will eventually fill up the constellation and will look similar to the D8PSK diagram. Note that none of the phase shifts go through zero amplitude, so there is less AM for this type of modulation compared to DQPSK, which does go through zero amplitude.

2.4.9 Differential 8-Level PSK

The D8PSK type of modulation is the same as π/4 DQPSK, but includes the phase-shift possibilities of 0°, 90°, −90°, and 180°, thus providing 0°, 45°, −45°, 90°, −90°, 135°, −135°, and 180° phase shifts. This provides eight possible phase shifts or 3 bits (2^3) of information, as shown in Figure 2-13.
Figure 2.13 Phasor diagrams for a π/4 DPSK and D8PSK modulation waveforms.
Since this is a differential system, these phase shifts are referenced to the previous bit, not the absolute phase. Therefore the previous bit is mapped to the reference phasor with zero degrees for every bit received, and the next bit is shown to have one of the eight possible phase shifts referenced to 0°.

If this was not a differential system, then the phasors would be absolute, not referenced to the previous bit.

Thus, for the same bandwidth as BPSK, the D8PSK can send three times as many bits (i.e., the bit rate is 3 times the bit rate of BPSK). The actual phase shifting occurs at the same rate as BPSK. The rate of the phase shifts is called the symbol rate. The symbol is the rate at which the phase is shifted, but the actual bit rate in this case is 3 times the symbol rate, since there are 3 bits of information in each phase shift or symbol. The symbol rate is important because it describes the spectral waveform of the signal in space. For example, if the symbol rate is 3 ksps (1000 samples per second), then the null-to-null bandwidth would be 6 kHz wide (2 times the symbol rate), which would decode into 9 kbps. Note that this type of modulation allows a 180° phase shift, which experiences AM.

2.4.10 16-Offset Quadrature Amplitude Modulation

Another common modulation scheme is 16-offset quadrature amplitude modulation (16-OQAM), which is very similar to OQPSK. In 16-OQAM, each of the phasors have two amplitude states before summation. The resultant phasor in one quadrant has four different possibilities (R1, R2, R3, and R4), as shown in the phasor diagram in Figure 2-14. Offset is used

![16-QAM Phasor Diagram](image)

Figure 2-14 Amplitude/phasor diagram for 16-OQAM.
here for the same reasons as in OQPSK, to prevent transitions through zero amplitude and to reduce the AM on the output.

Since there are four possible amplitude/phase positions in one quadrant and a total of four quadrants, there are 16 possible amplitude/phase positions in this modulation scheme (see Figure 2-14). Since this is 16 offset QAM, the “offset” means that the phasors in the defined quadrant can only change to the adjacent quadrants. For example, the phasors shown in quadrant 1 can only change to quadrants 2 and 4. These phasors cannot change from quadrant 1 to quadrant 3. In other words, only the I or Q channel can change in phase at one time, not both at the same time (see Figure 2-14).

2.4.11 Phasor Constellations and Noise Immunity

A phasor constellation is a technique used to determine the quality of phase modulated waveforms and to distinguish between phase states. A phasor constellation shows the magnitude and phase of the resultant phasor, including noise. A vector analyzer is used to display the constellations. The constellation diagram for an 16-OQAM signal is shown in Figure 2-14. The 16 phasors appear as points in a two-dimensional display representing both phase and amplitude. These constellation points show the amount of separation between one phasor state point and another. This shows the constellation diagram with no noise in the system.

To understand the noise immunity of different modulation types, Figure 2-15 shows two types of phase modulations including noise which varies the

Figure 2-15 Constellation and noise immunity between 16-QAM and BPSK.
phasor's end points for BPSK and 16-OQAM modulated signals. For BPSK, the constellations are close enough together that it is very easy to detect which value of phase was sent, 0° or 180°. Therefore BPSK is much more resistant to noise and variations in phasor values. Although the 16-OQAM signal contains more bits per phasor value or symbol, which provides a faster data rate for a given bandwidth, the actual phasor value is more susceptible to noise and it is much more difficult to separate the noisy phasor values, which results in more bit errors (see Figure 2-15). This is a trade-off between noise resistance and higher data rates.

A method used to measure the quality of the phasor values is to determine the error vector magnitude (EVM). An error vector is a vector in the I–Q plane between the ideal vector or constellation point and the received vector or constellation point. The constellation points are the ends of the vectors and appear as points on a vector analyzer. These points represent the magnitude and phase of the vectors. The average length or magnitude of the error vector, defined as the distance between these two points, is the EVM. The ratio of the EVM (the distance between constellation points) and the ideal vector magnitude multiplied by 100 provides the EVM as a percentage. For example, if the ideal phasor magnitude is equal to 10, and the EVM is equal to 3, then the EVM in percent would be $\frac{3}{10} \times 100 = 30\%$ EVM (see Figure 2-16). The smaller the percentage EVM, the less noise and the higher the probability of detecting the correct signal phase and amplitude.

![Figure 2-16 Error vector magnitude.](image-url)
2.4.12 Continuous Phase PSK

Continuous phase modulation is being used extensively in data links due to spectral characteristics, burst-type modulation, and packet radios, where data is sent in bursts or packets. The modulation causes the phase of the carrier to shift to another state, where it can remain in that given state for a period of time. Continuous phase modulation uses sinusoidal transitions from one phase state to another. This does not allow zero amplitude crossovers between phase shifts, thus this type of modulation does not exhibit AM (see Figure 2-17). This prevents spectral regrowth or sidelobe regeneration due to nonlinearities in the hardware.

- Sinusoid transitions from one phase state to another
- No zero crossing, No AM
- Remains at a phase state for a period of time
- Used for packet radio and other burst type systems

![Continuous phase PSK](image)

Figure 2-17 Continuous phase PSK.

2.4.13 Spectral Regrowth

Digital modulation causes sidelobes to be generated by the digital signal. These sidelobes extend continuously in the frequency domain. In order to not interfere with other out-of-band signals, and to comply with FCC
regulations, these sidelobes need to be filtered. However, when the digital modulation is not continuous, these sidelobes are regenerated when introduced to a nonlinear function in the hardware. For example, after the sidelobes are filtered, when they are amplified by the power amplifier, which most of the time is nonlinear, the sidelobes reappear. This can be a major concern when complying with regulations and preventing interference. Continuous phase modulation schemes minimize this spectral regrowth and keep the sidelobes down even when they are exposed to a nonlinear device (see Figure 2-18).

![Figure 2-18 Spectral regrowth or sidelobe regeneration.](image)

2.4.14 Minimum Shift Keying

If the OQPSK signal is smoothed by sinusoidally weighting the BPSK signals before summation, then another type of signal is produced, a minimum shift keying (MSK) signal. This process is shown in Figure 2-19.

The sinusoidal weighting frequency is equal to half the bit rate, so that it smooths the transition of a digital data bit by one cycle of the sine wave weighting signal. This provides a smoothing of the 180° phase shifts that occur in both of the channels. This smoothing slows the phase transitions of the two channels, which reduces the high-frequency content of the spectrum, resulting in attenuation of the sidelobes that contain the high frequencies. Therefore the spectrum is said to be efficient compared to
standard PSK systems (BPSK, QPSK, etc.) since more power is contained in the main lobe and less in the sidelobes. The main lobe for MSK is 1.5 times larger than for OQPSK for the same number of bits sent due to the sinusoidal weighting.

Since the modulation is half the bit rate, the spectrum is widened by $\frac{1}{2}$ bit width on both sides, which equals a 1 bit width bigger spectrum. Therefore the total width would be 3 times the bit rate, which is $1.5(2 \times$ bit rate). MSK is a continuous constant envelop modulation scheme, so it contains minimal AM and prevents sidelobe regeneration after filtering.

Minimum shift keying can be generated in two ways. The first is sinusoidally weighting the two BPSK channels in the OQPSK design before the summation takes place. This reduces the sidelobes and increases the main

Figure 2-19 MSK generator.
lobe. The other way to generate MSK is to use a frequency-shift keying (FSK) system, ensuring that the frequency separation is equal to the bit rate.

2.4.15 Frequency-Shift Keying

Minimum shift keying is generated by FSK, setting the frequency separation between the two frequencies equal to \(\frac{1}{2} \) the frequency shift rate or data rate. Therefore MSK is a continuous phase FSK with a modulation index of 0.5. This is where MSK got its name, since it is the minimum spacing between the two frequencies that can be accomplished and still recover the signal with a given shift rate. It is rather remarkable that the same waveform can be produced by two different generation methods. Each provides insight into MSK and two different ways to approach understanding, design, and analysis of these systems. A simple way of generating MSK is shown in Figure 2-20.

![Figure 2-20](image-url)
Figure 2-20 MSK generator using FSK.

A two-frequency synthesizer is frequency shifted by the binary bit stream according to the digital data. If the rate is set to the minimum bit rate, then MSK is the resultant output.

The frequency spacing of the FSK needs to be equal to \(\frac{1}{2} \) the bit rate to generate MSK. The frequency shift provides one bit of information, as does the BPSK waveform, but the null-to-null bandwidth is only 1.5 times the bit rate as compared to 2 times the bit rate in the BPSK waveform. A simulation shows different types of FSK with different spacings with respect to the bit rate. If the frequency spacing is closer than \(\frac{1}{2} \) the bit rate, then the information cannot be recovered. If the spacing is too far apart, the information can be retrieved using FSK demodulation techniques, but MSK is not generated. As the frequency spacing approaches \(\frac{1}{2} \) the bit rate, then the resultant spectrum is MSK (see Figure 2-21).
Figure 2-21 FSK spectrums with spacing minimized to generate MSK.

2.4.16 Sidelobe Reduction Methods

One of the problems with PSK systems is that the sidelobes can become fairly large and cause a problem with adjacent channel operation. The sidelobes continue out theoretically to infinity. The main concern is usually the first or second sidelobes, which are larger in magnitude. In order to confine the bandwidth for a particular waveform, a filter is required. The main problem with filtering a PSK signal is that this causes the waveform to be dispersed or spread out in time. This can cause distortion in the main signal and also more intersymbol interference (ISI), which is interference between the digital pulses.

2.4.17 Ideal Shaping Filter

For no ISI, the sampling time of the pulse needs to occur when the magnitude of all other pulses in the digital signal are zero amplitude. A square wave impulse response in the time domain would be ideal, since
there is no overlap of digital pulses, so sampling anywhere on the pulse would not have ISI. However, the bandwidth in the frequency domain would be very wide, since a square wave in the time domain produces a \(\sin(x)/x \) in the frequency domain.

Therefore the best shaping filter to use for digital communications is a \(\sin(x)/x \) impulse response in the time domain, which produces a square wave in the frequency domain. This provides ideal rejection in the frequency domain and also provides a sampling point in the center of the \(\sin(x)/x \) for where all the other digital pulses have an amplitude of zero. This provides the minimum ISI between symbols (see Figure 2-22). However, a \(\sin(x)/x \) impulse response is not possible since the sidelobes extend out to infinity. Thus practical filter implementations are used to approximate this ideal filter. Some of the practical filters used in communications are Gaussian, raised cosine, raised cosine squared, and root raised cosine, which are all approximations of the \(\sin(x)/x \) impulse response. The \(\sin(x)/x \) impulse response approximates a square wave in the frequency domain, which reduces the noise bandwidth, reduces out-of-band transmissions, and is designed to minimize ISI (see Figure 2-23).

![Impulse response filter in the time domain](image1)

![Ideal frequency response of a time domain impulse response Sinx/x filter](image2)

Figure 2-22 Ideal \(\sin x / x \) impulse response.
Figure 2-23 Practical digital waveform impulse responses.

Root raised cosine filters are used extensively in communications and data links. They are used in both the transmitter and the receiver, which basically splits the raised cosine filter, with half of the filter in the transmitter and half of the filter in the receiver. Therefore the net result is a combination of the square root of the raised cosine filters, which produces a raised cosine filter for the data link system. The root raised cosine filter has slightly faster transitions in the time domain for the transmitter pulse, and since a matched filter is used on the receiver side, splitting the raised cosine filter response provides a slight improvement in the performance.

Another type of filtering scheme uses a Gaussian-shaped pulse. A Gaussian-shaped curve is a standard bell-shaped curve showing a Gaussian distribution, which is used extensively in probability theory (see Chapter 6). The Gaussian-shaped impulse response also provides a good approximation to the ideal \(\sin(x)/x \) impulse response (see Figure 2-23). This provides effective use of the band and allows multiple users to coexist in the same band with minimum interference. One type of modulation that includes this Gaussian impulse response is called Gaussian MSK (GMSK). GMSK is a continuous phase modulation scheme that reduces the sidelobe energy of the transmitted spectrum. The main lobe is similar to MSK and is approximately 1.5 times wider than QPSK.
2.5 Direct Sequence Spread Spectrum

Many systems today use spread spectrum techniques to transport data from the transmitter to the receiver. One of the most common forms of spread spectrum uses PSK and is referred to as direct sequence spread spectrum (DSSS). The data are usually exclusive-or’d with a pseudo-random or pseudo-noise (PN) code that has a much higher bit rate than the data bit rate. The bits in this high-speed PN code are called chips, to distinguish them from data bits. This produces a much wider occupied spectrum in the frequency domain (spread spectrum) (see Figure 2-24).

![Diagram](image)

Figure 2-24 Direct sequence spread spectrum.

Direct sequence spread spectrum systems use phase-shift generators (PSGs) to transfer data from the transmitter to the receiver by phase shifting a carrier frequency. This is done for both spread spectrum systems and nonspread spectrum systems. There are several ways to build a PSG depending on the waveform selected.

Fundamentally, spread spectrum uses more bandwidth than is required to send the signal. It utilizes techniques such as a faster pseudo-random code to spread the bandwidth. A higher code rate requires more bandwidth to send and receive the code (see Figure 2-25).
2.5.1 Frequency-Hopping Spread Spectrum

Most frequency-hopping spread spectrum transmitters use a direct frequency-hopping synthesizer for speed. Direct frequency-hopping synthesizers use a reference oscillator and directly multiply or translate the reference frequency to higher frequencies for use in the hopping sequence. An indirect frequency synthesizer uses a PLL to generate the higher frequencies, which slows the process due to the loop bandwidth of the PLL. A PN code is used to determine which of the frequency locations to hop to. The frequency hop pattern is therefore pseudo-random to provide the spread spectrum and the processing gain required for the system (see Figure 2-26).

The process gain assumes that the jammer does not jam multiple frequency cells. Usually the best jammer is a follower jammer. A follower jammer detects the frequency cell that the frequency hopper is currently in and immediately jams that frequency. The delay is associated with the time to detect the frequency and then to transmit the jammer on that frequency. For slow frequency-hopping systems, this method works quite well because most of the time the signal will be jammed. The faster the frequency hopping, the less effective the follower jammer is on the system. Also, many times a combination of frequency hopping and direct sequence is used, slowing the detection process and reducing the effectiveness of the follower jammer.
Figure 2-26 Frequency-hopping spread spectrum.
2.5.2 Spread Spectrum

The main reasons for using spread spectrum are that it

- Provides jammer resistance, reducing the effects of jamming.
- Allows multiple users to operate in a given band.
- Reduces interference with existing narrowband systems.
- Minimizes multipath effects; multipath is narrowband and dependent on frequency.
- Provides a low probability of intercept (LPI); the transmitted signals are hard to detect and are spread out so that they look like noise.

Spread spectrum was initially invented and patented in 1942 by an actress named Hedy Lamarr and a composer named George Antheil. It was used by the military during World War II for covert operations to transmit signals undetected. However, it was not fully utilized until many years later. Today spread spectrum is commonplace and is used extensively in communications and in the development and design of data links.

2.5.3 Jammer Resistance

One of the main advantages of spread spectrum systems is their ability to operate in a jamming environment, both friendly interfering signals and hostile jammers where there is an attempt to jam communications. The more spreading that is used, the more jammer resistance the system has. An analysis that is used to determine a system’s ability to resist jamming is called process gain (G_p). Process gain is essentially the spread bandwidth over the required bandwidth, or how much band spreading the system is using.

The process gain for DSSS systems or PSK systems is

$$G_p = 10\log(\text{RF bandwidth/detected bandwidth}).$$

The process gain for frequency-hopping systems is equal to the occupied bandwidth over the signal bandwidth and is

$$G_p = 10\log(\text{number of frequency channels}^*).$$

*This assumes that frequency channels are independent and adjacent.
When calculating G_p for a frequency-hopping system, the separation of the frequencies used can alter the actual jamming margin. For example, if the frequencies are too close together, the jammer may jam multiple frequencies at a time. Also, the frequencies used need to be adjacent, with no missing frequencies, or the calculation above becomes invalid.

The jamming margin (J_m), or the level of a jamming signal that will interfere with the desired signal, is equal to the process gain (G_p) plus the spreading losses (L_{ss}):

$$J_m = G_p + L_{ss}. $$

*This assumes the signal-to-jammer ratio (SJR) is zero.

In addition, since most systems need a certain amount of signal level above the jamming level, the required SJR is specified. The required SJR will vary depending on the modulation used and the BER required. This needs to be included to calculate the actual jamming margin.

Below is an example of calculating the jamming margin of a direct sequence system with a required SJR:

$$G_p = 10\log(1000 \text{ MHz}/10 \text{ MHz}) = 20 \text{ dB}$$

$$J_m = 20 \text{ dB} + (-3 \text{ dB}) = 17 \text{ dB}$$

$$J_m (\text{actual}) = 17 \text{ dB} - \text{SJR (required)} = 17 \text{ dB} - 9.5 \text{ dB} = 7.5 \text{ dB}. $$

A signal can be received at the specified BER with the jammer 7.5 dB higher than the desired signal.

Three methods to obtain the process gain are shown in Figure 2-27. They include a frequency-hopping system which shows that during frequency dehopping, process gain is realized. The direct sequence method uses a sliding correlator to strip off the wide bandwidth, high-frequency code, thus leaving the low-frequency, narrower bandwidth data signal. And finally, an analog match filter (also applicable to the digital match filter which is commonly used today) shows that the signal can be increased or correlated to produce a large signal to achieve G_p.

One question that is often asked is “Does spreading the signal increase the SNR of the system so that it requires less power to transmit?” In general, the spreading process does not improve the SNR for a system. Sometimes this can be a bit confusing when only looking at the receiver. The receiver by itself improves the SNR related to the input signal at the antenna. This improvement is included in the link budget. The reason for this is because the bandwidth required for the spread signal is much larger on the input to the receiver than is needed for a nonspread system. Since the bandwidth is large on the input to the receiver, this bandwidth is either reduced to lower the noise power, which produces a better SNR, or the signals are
summed together, producing a larger amplitude which produces a better SNR.

However, if the entire spread spectrum system from the transmitter to the receiver is examined, the narrowband signal is not spread or despread and produces the same ideal SNR as the spread spectrum system. Therefore, in theory, the SNR required at the receiver for a nonspread system is the same as that required for a spread system.

In actual spread spectrum systems, however, the SNR is degraded due to the spreading losses associated with the spreading and despreading processes. Therefore, without jammers present and not considering possible multipath mitigation, it takes more power to send a signal using spread spectrum than it does to send the same signal using a nonspread spectrum system.

Figure 2-27 Methods for process gain.
2.5.4 Despreading to Realize Process Gain in the Spread Spectrum System

One of the ways to achieve the process gain in a spread spectrum system is by reducing the bandwidth, thereby lowering the noise. For example, a continuous BPSK signal uses a sliding correlator for despreading, which reduces the bandwidth. The bandwidth is spread due to the phase shift rate (chip rate) in the transmitter, and the receiver uses the same code and slides or lines up the code using a sliding correlator which multiplies the incoming signal with the chip code. This process strips off the high-speed code and leaves the slow data rate bit stream which requires less bandwidth to process. The narrow bandwidth reduces the noise level, but the signal level is not increased. The jamming signal is spread out by the sliding correlator so that the amplitude of the jammer is lower than the desired signal in the narrow bandwidth, providing the process gain (see Figure 2-27).

Another example of reducing the bandwidth to achieve process gain is using a frequency-hopping signal that has constant amplitude but changes frequency over a large bandwidth at the transmitter. The dehopper in the receiver follows the hopped signal and the resultant bandwidth is greatly reduced so that the noise is reduced by the same amount. However, the signal level is not increased, the bandwidth is reduced.

The narrowband jammer is spread out by the dehopping process so that the average amplitude of the jammer is lower than the desired signal (see Figure 2-27). The desired signal is only jammed for a short period of time as the jammer hops into the narrow bandwidth where the desired signal resides. The rest of the time the frequency hopper is hopping to different frequencies outside the desired signal bandwidth, which gives the process gain against jammers. However, although the average power of the jammer is reduced because the energy is spread out over the bandwidth, for an instant in time the signal will be jammed while the jammer is in-band. This may be critical in some systems where each hop frequency contains data and data are lost for that short period of time. However, if the hop rate is higher than the data rate, then the jammer power can be looked at as a decrease in average power.

Another way to realize process gain is by summing the power in each bit of energy to increase the signal strength. This is accomplished in the analog domain by using a match filter similar to an acoustic charge transport (ACT) device or a surface acoustic wave (SAW) device (see Figure 2-27). This can also be done digitally by using a finite impulse response (FIR) filter with the tap (single delay in a shift register) spacing equal to the chip time, with the weights either +1 or −1 depending on the code pattern. These concepts will be discussed later. This digital system produces pulses when the code
is lined up and data can be extracted as the pulses are received, or by using the time slot when the pulses occur for pulse position modulation (PPM). Although the bandwidth is not affected, so the noise is not decreased, it does integrate the signal up to a larger level. The process gain is \(10\log_{10}(\text{number of bits combined})\). The jammer is not coherent to the matched filter, so it only produces sidelobes at the time of the system pulses and in between the system pulses. These sidelobe levels are reduced due to the length of the matched filter.

All of these approaches are used for low probability of intercept (LPI) systems since the signal is spread out and hard to detect unless a matched receiver is used with known spread spectrum characteristics. The main reasons for using spread spectrum are to reduce the effects of jamming and interfering signals, reduce the ability for detection by an unwanted receiver, and for multipath mitigation. However, remember that it takes more power to send a spread spectrum signal due to spreading losses.

2.5.5 Maximal Length Sequence Codes

Maximal length sequence codes, referred to as m-sequence codes, are used extensively in digital communication systems. The reason is that they have very good properties for minimizing interference between codes by reducing the cross-correlation products or the amount of correlation with the wrong code.

Some of the code properties that they contain are the following:

- Runs (sections of code) are defined: half of the runs are of length 1, one-quarter of the runs are of length 2, one-eighth of the runs are of length 3. The length is the amount of consecutive “1”s or “0”s in a code.

- Contains one more “1” as compared to the number of “0”s.

- Their autocorrelation function is 1 for zero delay, \(-1/(2^m - 1)\) for any delay (\(m\) is the number of shift registers and \(2^m - 1\) is the length of the code), positive or negative, greater than one bit with a triangular shape between \(\pm 1\) bit.

- Generated by a linear feedback shift register (LFSR).

- The taps of the LFSR are defined depending on the polynomial.

- Tap numbers will all be relatively prime.

These codes, or a modification of these codes, are used in nearly all digital communication systems. In the case of the global positioning
system (GPS), the different m-sequence codes for the different satellites are generated by using an m-sequence code and by multiplying this code with different delays of the same code (details are provided later in this book).

2.5.6 Maximal Length PN Code Generator

A method of building a PN generator consists of a shift register and a modulo-2 adder. The taps (digital delays) used from the shift register to the modulo-2 adder are specified for each of the shift register lengths to generate a maximal length sequence (MLS) code. If a MLS code can be chosen so that only two taps are required, a simple two-input exclusive-or gate can be used. A “1” is loaded into the shift registers on power-up to get the code started (see Figure 2-28).

![Figure 2-28 Maximal length sequence generator.](image)

A counter is provided to ensure that the “all-zeros case” is detected (which would stop the process) and a “1” is automatically loaded into the PN generator. The basic building block for generating direct sequence PSK systems is the MLS generator. There are other methods of generating MLS codes. One process is to store the code in memory and then recall the code serially to generate the MLS code stream. This provides the flexibility to alter the code, for example, to make a perfectly balanced code of the same number of “0”s as “1”s (orthogonal code), which is a modification to the MLS
generator. This provides a code with no direct current (DC) offset. The DC offset in the system causes the carrier to be less suppressed because it biases the mixer on an average of zero, and if there is not a balanced input, then there is an added bias that causes the carrier to bleed through the mixer to the output. Also, other types of codes can be generated, for example, the Gold codes that are used to provide orthogonal codes that reduce the cross-correlation between different code sets.

2.5.7 Maximal Length PN Code Taps

In order to generate a maximal length code using the code generator previously discussed, the taps of the shift register are defined by a maximal length tap table. As the length of the shift register increases, the number of possible tap configurations increases. A list of tap values is shown in Figure 2-29.

Figure 2-29 Maximal length PN code taps.

2.5.8 Gold Codes

Gold codes are a special case of maximal length codes. Basically Gold codes are generated by linearly combining two MLSs and then selecting only certain pairs, known as preferred pairs. These codes provide minimum cross-correlation properties. An extension of the Gold codes is
making the code orthogonal. This is accomplished by adding a zero to the Gold code.

2.5.9 Other Codes

There are many other codes that are used in digital communication. Some of these codes are listed below:

- Kasami sequences. These codes are used and also have low cross-correlation properties.
- Orthogonal codes. The Hadamard transform generates these codes, which, if they are ideal, have no cross correlation. However, if they are nonideal, any offset causes problems with cross correlation.
- Walsh codes. These codes are generated from an orthogonal set of codes defined using a Hadamard matrix of order N. The generator block outputs a row of the Hadamard matrix specified by the Walsh code index.

2.5.10 Spectral Lines in the Frequency Domain

Another one of the criteria that needs to be considered when selecting codes for communications is the characteristics of the spectral lines (unwanted frequencies) that are generated in the frequency domain. This is especially important for short codes, which will produce spectral lines caused by the code repetition frequency and sections of the code that repeat (see Figure 2-30). Basically, anything that repeats in the time domain will

![Figure 2-30 Spectral lines caused by repetitions in the code.](image-url)
show up as a spectral frequency in the frequency domain. This can pose a problem with requirements for power spectral density (frequency content) in the specified band.

2.6 Other Forms of Spread Spectrum Transmissions

Other forms of spread spectrum include time hopping and chirped-FM. The time-hopping system uses the time of transmission of the data and ignores the rest of the time, which reduces the overall effect of the jammer that has to be on for the entire time. The chirped system generates more bandwidth by sweeping over a broad bandwidth. This system reduces the bandwidth in the detection process by reversing the process, thus providing process gain.

2.6.1 Time Hopping

Time hopping entails transmitting the signal only at specified times, that is, the transmissions are periodic and the times to transmit are pseudo-random using a pseudo-random code (see Figure 2-31). The process gain is equal to 1/duty cycle. This means that if the duty cycle is short—on for a short period of time and off for a long period of time—the process gain is high.

![Figure 2-31 Time-hopping spread spectrum signal.](image)

The receiver demodulates this by only looking at the times that the signal was sent, knowing the pseudo-random sequence of time slots. This increases the level of the signal during the time slots and decreases the average power of the jamming signal by ignoring the other time slots, since the jamming signal is spread over all the pulses.
2.6.2 Chirped-FM

Chirped-FM signals are generated by sliding the frequency in a continuously changing manner, similar to sweeping the frequency in one direction. The reason that these signals are called chirped is that when spectrally shifted to audible frequencies, these signals sound like a bird chirping. There are up-chirps and down-chirps, depending on whether the frequencies are swept up or down. Chirp signals can be generated by a sweeping generator with a control signal that resets the generator to the starting frequency at the end of the chirp. Chirp signals can also be generated by using SAW devices excited by an impulse response (which theoretically contains all frequencies). The delay devices or fingers of the SAW device propagate each of the frequencies at different delays, thus producing a swept frequency output. This reduces the size of chirping hardware tremendously.

For chirp-FM systems, the instantaneous frequency is calculated by

\[F = F_h - \frac{t(W/T)}{\Delta t}, \]

where
- \(F \) = instantaneous frequency,
- \(F_h \) = highest frequency in the chirped bandwidth,
- \(t \) = change in time (\(\Delta t \)),
- \(W \) = bandwidth of the dispersive delay line (DDL),
- \(T \) = dispersive delay time.

For chirp systems, the high frequencies have more attenuation for a given delay. For a flat amplitude response for all frequencies, the low frequencies need to be attenuated to match the high frequencies. Therefore the total process contains more insertion loss. SAW devices are used to provide frequency-dependent delays, since it is easier to control the delay with lower frequency sound waves than electromagnetic waves. These are called acoustic delay lines or delay fingers.

The up-chirp is used by the transmitter; the down chirp is used by the receiver, matched to the transmitter to eliminate the chirp (see Figure 2-32). The up-chirp spreads the frequencies over a broad band and the down-chirp despreads the signal. In addition, the jammer, when in the down-chirp, since it is not spread by the up-chirp, is spread across a broad band, thus reducing the impact that the jamming signal has on the system (see Figure 2-32).
2.7 Multiple Users

To allow multiple users in the same geographical area, a scheme needs to be allocated to prevent interference between systems. Some of the schemes for reducing interference are the following:

- Time division multiple access (TDMA)
- Code division multiple access (CDMA)
- Frequency division multiple access (FDMA).

These techniques are shown in Figure 2-33. Some control is required in all of these systems to ensure that each system in an operating area has different assignments.

Time division multiple access provides interference reduction by having the systems communicate at different times or time slots using the same frequencies and codes (see Figure 2-33). If the systems have predetermined time slots, then the system is considered to be time division multiplexing.
(TDM). If a system accesses the time slot, say on a first come, first serve basis, then the system is a TDMA system. This definition applies to other types of systems, such as CDMA/code division multiplexing (CDM) and FDMA/frequency division multiplexing (FDM).

Code division multiple access provides interference reduction by having the systems communicate on different codes, preferably maximal length sequence codes, orthogonal codes, or Gold codes, at the same frequencies and times, which provides minimum cross correlation between the codes, resulting in minimum interference between the systems (see Figure 2-33). A lot of research has been done to find the best code sets for these criteria. Generally the shorter the code, the more cross correlation interference is present, and fewer optimal codes can be obtained.

Frequency division multiple access provides interference reduction by having the systems communicate on different frequencies, possibly using the same times and codes (see Figure 2-33). This provides very good user

Figure 2-33 Multiple user techniques applying TDMA, CDMA, and FDMA.
separation, since filters with very steep roll-offs can be used. Each user has a different frequency of operation and can communicate continuously on that frequency.

Each of the multiuser scenarios discussed above reduces interference and increases the communications capability in the same geographical area.

2.7.1 Other Methods for Multiuser Techniques

Other methods to allow multiple users in the same band of frequencies include frequency hopping, spatial separation, orthogonal techniques, and wideband/narrowband signal separation. Frequency hopping is where each user has a different hop pattern. Spatial separation is where each user is in a different area and they are separated in space or direction. Pointing directional antennas to different sectors allows more users to operate in the same band. Orthogonal techniques are used for separating users where each user is orthogonal to the others in the band. And finally, narrowband and wideband users can be separated using correlation techniques. Wideband signals do not have autocorrelation with a chip/bit delay, whereas narrowband signals have autocorrelation with the same delay. This technique will be utilized in the adaptive filter discussion to mitigate narrowband jammers in a wideband signal environment.

2.7.2 Orthogonal Signals

There are several types of orthogonal signals that can be used to separate multiple communication links in the same band. This is valuable for multiple access applications and for separation of channels to reduce adjacent channel interference. Some of the techniques that are used to separate signals by orthogonal means include

- Phase separation: separating I/Q or cosine and sine signals, for example.
- Orthogonal frequency separation: orthogonal frequency division multiplexing (OFDM), which uses orthogonal frequencies.
- Antenna polarization: separation due to vertical versus horizontal, left-hand circular polarized versus right-hand circular polarized (LHCP/RHCP).
- Jammer/signal separation: Graham-Schmidt orthogonalization, forces the jammer to be orthogonal to the signal using error feedback.
2.7.3 Quadrature Phase Detection of Two Signals

Quadrature phase detection is the ability to separate signals due to orthogonal phases. For example, if one signal can be put on an in-phase carrier, \(\cos(\omega t) \), and another signal put on an orthogonal signal, 90° out of phase of the first signal, \(\sin(\omega t) \), then these signals can be separated by the receiver (see Figure 2-34).

![Figure 2-34 Quadrature detection using orthogonal phase separation.](image)

A simple math calculation shows that the two signals will be on each of the paths, as shown below:

- **Path 1**: Low-pass filter included to eliminate the sum term.
 f1 signal: \(f1(t) \cos(\omega t) \ast \cos(\omega t) = f1(t)\left(\frac{1}{2}\cos(\omega t - \omega t) + \frac{1}{2}\cos(\omega t + \omega t)\right) \)
 \(= \frac{1}{2}f1(t)[\cos(0)] = \frac{1}{2}f1(t) \); signal f1 is detected.
 f2 signal: \(f2(t) \sin(\omega t) \ast \cos(\omega t) = f2(t)\left(\frac{1}{2}\sin(\omega t - \omega t) + \frac{1}{2}\sin(\omega t + \omega t)\right) \)
 \(= \frac{1}{2}f2(t)[\sin(0)] = 0 \); signal f2 is not detected.

- **Path 2**: Low-pass filter included to eliminate the sum term.
 f1 signal: \(f1(t) \cos(\omega t) \ast \sin(\omega t) = f1(t)\left(\frac{1}{2}\sin(\omega t - \omega t) + \frac{1}{2}\sin(\omega t + \omega t)\right) \)
 \(= \frac{1}{2}f1(t)[\sin(0)] = 0 \); signal f1 is not detected.
 f2 signal: \(f2(t) \sin(\omega t) \ast \sin(\omega t) = f2(t)\left(\frac{1}{2}\cos(\omega t - \omega t) - \frac{1}{2}\cos(\omega t + \omega t)\right) \)
 \(= \frac{1}{2}f2(t)[\cos(0)] = \frac{1}{2}f2(t) \); signal f2 is detected.
Therefore both the signals will be retrieved, with signal f1 appearing on path 1 and signal f2 appearing on path 2. A phasor diagram shows the separation of the two signals (see Figure 2-35).

![Signal Diagram](image)

Figure 2-35 Quadrature signals.

A practical detector called a Costas loop uses feedback to phase lock on a carrier frequency in order to provide two phases at the output of the detection process (see Figure 2-36). Costas loops will be discussed in detail later in this book.

2.7.4 Orthogonal Frequency Division Multiplexing

An extension of FDM uses the principle that if signals are orthogonal, they do not interfere with each other. A technique that is being used in many communications applications is known as orthogonal frequency division multiplexing (OFDM). This technique allows closer spacing of multiple users in a given bandwidth or allows for multiple parallel channels to be used for higher data rates by combining parallel channels. It is used for broadband communications in both powerline communications (PLC) and RF systems with different modulation schemes, including BPSK, QPSK,
and QAM. The basic concept is to use frequencies that are orthogonal over a time period.

The basic orthogonality concept is that the inner product of two orthogonal frequency channels are integrated to zero over a specified integration time and the inner product of the same frequency is equal to one:

\[
< X_n(t), X_m(t) > = \int_0^t X_n(t)X_m(t)dt = 1,
\]

where

\[
X_n(t) = X_m(t),
\]

and

\[
< X_n(t), X_m(t) > = \int_0^t X_n(t)X_m(t)dt = 0,
\]

where

\[
X_n(t), X_m(t) \text{ are orthogonal.}
\]

Therefore, if the frequencies are orthogonal, their inner products are equal to zero. So taking the inner product of all the frequencies with the desired frequency, only the incoming desired frequency will be present.
One way to obtain orthogonal frequencies is to ensure that the frequencies are harmonics of the fundamental frequency. Then, by choosing the integration time, the inner product will be zero. An example of orthogonal frequencies containing the second and third harmonic is shown in Figure 2-37.

![Figure 2-37 Orthogonal frequencies producing an inner product of zero.](image)

When any combination of these frequencies are multiplied and integrated with the limits shown in Figure 2-37, the results are equal to zero. If the inner product of any one of these frequencies with itself is used, then the inner product is not zero, and the specified signal is detected.

A way to visualize this is to take the example above, multiply every point on the curves and sum the values. They will be equal to zero for the orthogonal frequencies and equal to a one for the same frequencies. A simple example was shown earlier using \(\cos(\omega t) \) and \(\sin(\omega t) \) as the orthogonal signals.

For OFDM, there are multiple users for each of the frequency slots, and the adjacent slots are made to be orthogonal to each other so that they can overlap and not interfere with each other. This allows more users to operate in the same bandwidth. Thus using orthogonal frequencies reduces adjacent channel interference and allows for more channels to be used in a smaller bandwidth (see Figure 2-38).

Another use for OFDM is to allow high-speed data to be transmitted in a parallel system. This is accomplished by taking the serial data stream from the transmitter and converting to parallel streams, which are multiplexed using different frequency channels in the OFDM system to send the parallel stream of data to the receiver. The receiver then performs a parallel-to-serial conversion to recover the data. In addition, the system can be made adaptive to only select the channels that are clear for transmission.
2.7.5 Other OFDM Techniques

In order to improve the performance of a standard OFDM system, additional modulation techniques have been added. For example, here are two types of OFDM systems that have used other techniques to improve their performance:

- Coded OFDM (COFDM): implements coding schemes in addition to orthogonal techniques to improve the performance against multipath.

- Vector OFDM: uses time division multiplexing (TDM) and packet communications to improve wireless broadband networks, including local multipoint distribution service (LMDS) systems.

2.8 Power Control

Power control is a technique to control the amount of power of multiple transmitters into a single receiver. This is especially important for systems using (CDMA) and other multiplexing schemes. Power control helps reduce the effects of near/far problems where one user is close to the transceiver and another user is far away. The user close to the receiver will jam the user that is far away from the receiver. If power control is used, the idea is that the power will be the same at the receiver.

A multiuser system or network is based on the premise that the users are all at the same power level and the separation between users is accomplished by multiplexing schemes such as CDMA. However, most users are
at different locations and distances from the receiver so that the power into the receiver varies tremendously, up to 100 dB. Since most CDMA systems can only handle variations in power or jamming margin that is much less than this, there is a problem with interference between users.

Power control helps to mitigate this interference problem by having the user only transmit the amount of power required for the distance from the receiver. Therefore, for a user close to the receiver, the power is reduced, and for a user at a far distance from the receiver, the power is increased. The main objective is to have the power, regardless of the distance, at the same level when it reaches the receiver (see Figure 2-39).

![Diagram of power control in CDMA systems](image)

Figure 2-39 Power control.

Many digital cell phone networks use power control to allow more users and less interference. The base station controls the power of all of the telephones that are communicating with that particular base station so that the power is nearly the same regardless of the distance from the base station. With the limited amount of process gain and jamming margin, a typical CDMA system is required to have power control to operate correctly. Power control is used where process gain is inadequate for good separation of users.
2.9 Summary

The transmitter is a key element in the design of the transceiver. The transmitter provides a means of sending out the information, over the channel, with the power necessary to provide coverage to the intended receiver. Several types of modulation methods were discussed with their advantages and disadvantages. There are many types of spread spectrum transmitters that provide process gain to reduce the effects of jammers and to allow more efficient use of the spectrum for multiple users. Digital systems have many advantages over analog systems and different techniques were discussed for optimizing the digital data link.

References

Bullock, Scott R. “Phase-shift keying serves direct-sequence applications,” Microwaves and RF, December 1993.

Problems

1. Show that not filtering the output of a mixing product could result in a cancellation of the desired signal using a carrier of 1 MHz and a signal carrier of 0.1 MHz.

2. If the unwanted sideband in problem 1 was filtered, show that the desired signal can be retrieved.

3. Show by using a phasor diagram that two QPSK modulators can be used to generate 8-PSK (eight phase states). Find the phase relationship of the two QPSK modulators?

4. Determine an 8-PSK modulator that eliminates the 180° phase shift. Why is the 180° shift a problem?

5. Why is it required to load a “1” in a simple PN generator?

6. Find the process gain for a time-hop signal with a duty cycle of 20%?
7. Find the process gain of a frequency hopper using 20 frequencies with a jammer that has the ability to eliminate two frequencies at time?

8. What is the basic difference between OQPSK and 16-OQAM?

9. What is the basic difference between \(\pi/4\) DQPSK and D8PSK?

10. What is the basic concept of process gain with respect to bandwidths?

11. What two factors are needed to calculate the jamming margin from process gain?

12. Why is power control needed for a CDMA data link?

13. What is the main advantage of a digital data link over an analog data link?

14. What are the advantages and disadvantages of differential systems and coherent systems?

15. What is the advantage of an MSK or CP-PSK over standard BPSK and QPSK systems?

16. What two approaches can be used to generate MSK?

17. What are the advantages and disadvantages of BPSK and 16-QAM?

18. What types of filters are used to approach an ideal match filter? What is the result in the frequency domain of an ideal match filter in the time domain?

19. What are the reasons to use spread spectrum? What would be the reason to not use spread spectrum?

20. What movie star helped to invent spread spectrum?

21. What technique does direct sequence use to generate spread spectrum?

22. What devices can be used to generate spread spectrum codes?

23. What are the three main techniques that can be incorporated to allow multiple users?
The receiver is responsible for downconverting, demodulating, decoding, and unformatting the data that is received over the link with the required sensitivity and bit error rate (BER) according to the link budget analysis of Chapter 1. The receiver is responsible for providing the dynamic range (DR) to cover the expected range and power variations and to prevent saturation from larger power inputs and provide the sensitivity for low-level signals. The receiver provides detection and synchronization of the incoming signals to retrieve the data that was sent by the transmitter. The receiver section is also responsible for despreading the signal when spread spectrum signals are used.

The main purpose of the receiver is to take the smallest input signal, the minimum detectable signal (MDS), at the input of the receiver and amplify that signal to the smallest detection level at the analog-to-digital converter (ADC) while maintaining a maximum possible signal-to-noise ratio (SNR). A typical block diagram of a receiver is shown in Figure 3-1. Each of the blocks will be discussed in more detail.

3.1 Superheterodyne Receiver

Heterodyne means to mix, and superheterodyne means to mix twice. Most receivers are superheterodyne receivers, which means that they use a common intermediate frequency (IF) and two stages or double conversion.
Figure 3-1 Typical superheterodyne receiver.

to convert the signal to baseband, as shown in Figure 3-1. The reasons for using this type of receiver include

- A common IF can be used to reduce the cost of parts and simplify design for different radio frequency (RF) operating ranges.

- It is easier to filter the image frequency since the image frequency is far away at two times the IF.

- It is easier to filter intermods and spurious responses.

- It has the ability to change or hop the RF local oscillator (LO) while the IF filters and circuitry remain the same.

Multiple-stage downconverters with more than one IF are sometimes used to aid in filtering and commonality. Occasionally a single downconverter is used which generally contains an image-reject mixer to reduce the effects of the image frequency.

3.1.1 Basic Functions of the Receiver

The basic functions of the receiver are the following:

- Provide an antenna to receive power from a transmitted signal traveling through space.

- Incorporate a transmit/receive (T/R) control to allow the same antenna for both the receiver and transmitter.

- Provide a limiter to prevent damage to the front end of the receiver. This may not be required in some systems.
THE RECEIVER

- Image reject filter/band reject filter reduces the image frequencies and frequencies in other bands from interfering with the incoming signal. It also reduces the noise.

- Dynamic range provides the necessary DR to handle change, prevent saturation, and maintain a good SNR throughout the receiver.

- A low-noise amplifier (LNA) helps to establish the noise figure (NF) of the receiver.

- Provide downconverters, filters, and gain to process the incoming signal and to provide a processed signal with little degradation to the detection process.

- Provide data detection, despreading, and demodulation. For digital signals this includes an ADC to provide a digital signal and digital signal processing to retrieve the sent data.

3.2 Antenna

The receiver antenna gain is computed in the same way as for the transmitter with the calculation performed using the link budget in Chapter 1. Factors to consider in determining the type of antenna to use are frequency, the amount of gain required, and the size. These factors are similar to the ones used to determine the transmitter antenna. Parabolic dishes are frequently used at microwave frequencies. In many communications systems, the receiver uses the same antenna as the transmitter, which reduces the cost and size of the system. The antenna provides gain in the direction of the beam to reduce power requirements or to increase the sensitivity of the receiver and also to reduce the amount of interference received. This is called selective jamming reduction. The gain of the antenna is usually expressed in dBi, which is the gain in dB reference to what an ideal isotropic radiator antenna would produce.

3.3 Transmit/Receive Control

As was described in the transmitter section, the signal is received by the antenna and is passed through a device—a duplexer or diplexer, T/R switch, or circulator—to allow the same antenna to be used by both the transmitter and receiver. The chosen device must provide the necessary isolation between the transmitter circuitry and the receiver circuitry to prevent damage to the receiver during transmission.
3.4 Limiters

Limiters are placed in a receiver to protect the LNA from large spikes of energy. If the input power of the spike becomes too large, the limiter can no longer limit the input power of the spikes. Also, limiters take a finite time to respond, which allows the spike of energy (ergs of power) to enter the receiver for a short period of time. Limiters also have an insertion loss that needs to be included in the losses in the link budget. This loss directly affects the link budget: a 1 dB loss equals a 1 dB loss in the link analysis.

3.5 Image Reject Filter/Band Reject Filter

In nearly all receivers, an image reject filter/band reject filter is placed in the front end so that the image frequencies along with other unwanted signals are filtered out, with a decrease in noise. These unwanted signals are capable of producing intermodulation products (intermods). Intermods are caused by the nonlinearities of the LNA and the mixer.

The image frequencies are the other band of frequencies that, when mixed with the LO, will fall in the passband of the IF band. For example,

\[
\begin{align*}
\text{LO} &= 1000 \text{ MHz} \\
\text{Desired input signal} &= 950 \text{ MHz} \\
\text{IF} &= 1000 \text{ MHz} - 950 \text{ MHz} = 50 \text{ MHz}
\end{align*}
\]

Thus,

\[
\begin{align*}
\text{Image frequency} &= 1050 \text{ MHz} \\
1050 \text{ MHz} - 1000 \text{ MHz} &= 50 \text{ MHz} = \text{same IF.}
\end{align*}
\]

Therefore, if the receiver did not have an image reject filter in the front end, then an interference signal at 1050 MHz would fall in the IF passband and jam the receiver. In addition, the noise power in the image bandwidth would increase the receiver NF by 3 dB.

Another approach to rejecting the image frequency is to use an image reject mixer. Image reject mixers are specially designed mixers used to attenuate the image frequency.

3.6 Dynamic Range/Minimum Detectable Signal

There is a great deal of confusion in the definitions and measurements of MDS and DR. Care should be taken to ensure accurate analysis and to compare different systems with the same criteria. One of the main problems is that there are many systems today that process signals in digital
signal processing (DSP) integrated circuits, which makes comparisons with
the analog-type systems difficult. MDS is a measurement of how well a re-
ceiver can detect a signal with respect to noise and is generally calculated
at the ADC. DSP systems may not be able to evaluate the signal at the ADC,
especially if spread spectrum systems are used and the despreading is per-
formed in the digital domain. Before determining the MDS for a particular
system, careful analysis needs to be performed to provide the optimal place
in the system to do the calculation. Also, the criteria for calculating the MDS
need to be considered to evaluate each system’s architecture. BER, tangen-
tial sensitivity (TSS), where the pulse is tangential to the noise, SNR, and
others can be used as the criteria. To evaluate each system fairly, the same
process should be used for comparison.

The minimum signal that the ADC can detect can be calculated using
the maximum voltage that the ADC can process. This assumes there is
no saturation and the ADC can handle the full DR. For example, if the
maximum voltage is 2 V, then the maximum 2 V will fill up the ADC with
all “1”s. For each bit of the ADC, the DR is increased by approximately
6 dB/bit. The reason for this is that the DR of the voltage for each bit in the
ADC is divided in half and then converted to dB:

\[
10 \log \left(\frac{1}{2} \right)^2 = -6 \text{ dB}
\]

For each ADC bit, the value of the bit could be high or low, which splits
the decision by \(\frac{1}{2} \). For example, if there is a range from 0 V to 10 V on the
input to the ADC, and there is one bit in the ADC with a threshold set at 5 V,
then the DR has been increased by \(\frac{1}{2} \). Now the ADC can detect 5 V and
10 V instead of just 10 V. If the bit value is high, then the range is from 5 V
to 10 V; if the bit value is low, then the range is from 0 V to 5 V. Since
voltage levels are being evaluated, the \(\frac{1}{2} \) is squared. If there are two bits,
then the range can be divided into four levels, and each level is \(\frac{1}{4} \) the total
DR, which calculates to −12 dB.

Consider, for example, a system with an ADC that can handle a max-
imum of 2 V and uses an 8-bit ADC. The 8-bit ADC provides 48 dB of DR
which produces a minimum signal that is approximately −48 dB below
2 V. Therefore the minimum signal in volts would be approximately
7.8 mV, with a DR equal to 48 dB.

The system noise, which establishes the noise floor in the receiver, is
comprised of thermal noise \((kTBF) \) and source noise. The values of \(k \), \(T \), \(B \),
and \(F \) are usually converted to dB and summed together. Additional noise
is added to the system due to the source noise, including LO phase noise,
LO bleed-through, and reflections due to impedance mismatch. Therefore
the noise floor is determined by

\[
\text{Noise floor} = \text{thermal noise} + \text{source noise}.
\]
The noise floor and the minimum signal at the ADC is used to calculate the SNR, and the MDS is calculated using given criteria for evaluation, such as the tangential sensitivity for pulsed systems.

The input noise floor for the system is used to determine the amount of gain that a receiver must provide to optimize the detection process. The gain required from the receiver is the amount of gain to amplify this input noise to the threshold level of the ADC’s least significant bit (LSB). Therefore the gain required (G_r) is

$$G_r (dB) = [\text{noise floor at the ADC’s LSB (dB)}] - [\text{input noise floor at the receiver (dB)}].$$

The DR of the receiver is the DR of the ADC unless additional DR devices are included, such as log amplifiers or automatic gain control (AGC), to handle the higher level inputs. Many digital systems today rely on saturation to provide the necessary DR. The DR of the receiver depends on the portion of the receiver that has the smallest difference between the noise floor and saturation.

Dynamic range is another often misunderstood definition. The definition used here is the total range of signal level that can be processed through the receiver without saturation of any stage and within a set BER or defined MDS level (however, some systems can tolerate saturation, which increases this dynamic). This assumes that the signal does not change faster than the AGC loops in the system. If the signal changes instantaneously or very fast compared to the AGC response, then another definition is required, instantaneous dynamic range (IDR). The IDR is the difference between saturation and detectability, given that the signal level can change instantaneously. The IDR is usually the DR of the ADC, since the AGC does not respond instantaneously.

In order to determine the receiver’s DR, a look at every stage in the receiver is required. The NF does not need to be recalculated unless there is a very large amount of attenuation between stages or the bandwidth becomes wider with a good deal of gain. Generally, once the NF has been established, a look at the saturation point in reference to the noise level at each component can be accomplished. An even distribution of gains and losses is generally the best. A DR enhancer such as an AGC or a log amplifier can increase the receiver’s DR but may not increase the IDR. However, devices such as log amplifiers can actually reduce the overall DR by adding noise to the desired signal.

Note that the DR can be reduced by an out-of-band large signal, which causes compression, and also can mix in noise. The jamming signals should be tested and analyzed to determine the degradation of the receiver’s DR.
3.7 Types of DR

Dynamic range in a receiver design can designate either amplitude or frequency. The two DRs are generally related and frequently only one DR is used, but the type of DR specified is given for a particular reason; for example, a two-tone test or receiver test.

3.7.1 Amplitude DR

If a design requires the output be within a given amplitude signal level, then the DR is generally given as the difference between the MDS and the maximum signal the receiver can handle (saturation). Often the 1 dB compression point provides a means of determining the maximum signal for the receiver. The 1 dB compression point is where the output signal power is 1 dB less than what the linear output power is expected to be with a given input. This means there is some saturation in the receiver (see Figure 3-2). Operating at this point results in 1 dB less power than what was expected.

![Figure 3-2 Amplitude DR using a 1 dB compression point.](image)

If the DR needs to be improved, then an AGC or a log amplifier can be added. The amplitude DR is probably the most commonly used DR term. Compression and saturation are important to prevent distortion of the incoming signal, which generally increases the BER.

3.7.2 Frequency DR

Many systems are concerned with the frequency DR. The frequency DR describes the ability of a receiver to distinguish different frequencies, whether it is between multiple desired frequencies or between the desired
frequency and spurious signals or jammers. This is related to the 1 dB compression point DR, since when nonlinearities are present, there are unwanted spurious signals generated which reduce the frequency DR (see Figure 3-3). There are two methods of analysis that generally prove useful information when considering frequency DR.

- \(P_o = G \cdot P_i \) \(P_i = \) Input power, \(G = \) gain, \(P_o = \) Output power
- \(IP2 = IP3 \) \(IP2 = 2^{nd} \) order intercept point, \(IP3 = 3^{rd} \) order intercept point

![Diagram showing frequency dynamic range: two-tone spur-free dynamic range (SFDR).](image)

Figure 3-3 Frequency dynamic range: two-tone spur-free dynamic range (SFDR).

3.7.3 Single-Tone Frequency DR

One method is to use a one-tone DR and calculate the spurs that will reduce the frequency DR because of this tone. This method is not used very often because generally there is more than one input signal.

3.7.4 Two-Tone Frequency DR

A better way, and one that is more commonly used, is to define the DR using a two-tone DR analysis. This approach takes two input signals and their generated spurious products and calculates their power levels using intercept points on the linear or desired slope (see Figure 3-3).

The first-order spurs—\(f_1 \) and \(f_2 \)—do not test nonlinearity, so this method is not used. The second-order spurs—\(2f_1, 2f_2, f_1 \cdot f_2 = (f_1 + f_2, \)
f1 − f2)—are caused by nonlinearities and are at high power levels, however, they can generally be easily filtered out. If they cannot be filtered out, since they are larger than third order, this could cause some problems due to the high power level of the spurs. The third-order spurs—3f1, 3f2, 2f1 ∗ f2 = (2f1 − f2, 2f1 + f2), f1 ∗ 2f2 = (f1 − 2f2, f1 + 2f2)—are also caused by nonlinearities. These spurs are all filtered out except for 2f1 − f2, f1 − 2f2, which are in-band and are used to test the frequency DR.

The second-order intercept point helps to determine the second harmonics of the two inputs (2 × 0, 0 × 2) and the product of the two signals (1 × 1). The second-order spurs are the highest power intermod products that are created due to a nonlinear portion of the receiver. However, if the bandwidth is limited to less than an octave, these products are eliminated and the third-order spurs (2 × 1, 1 × 2) become the strongest products in-band. These spurs generally fall into the operating band, especially when they are close together in frequency.

The third-order intercept point becomes the criteria for calculating the DR for the receiver (see Figure 3-3). Caution must be used when performing the analysis, because if the bandwidth is greater than an octave, the second-order intermods cannot be neglected.

3.8 Second- and Third-Order Intermodulation Products

The second- and third-order intermod points are used to determine the intermod levels in the system. The output power (in dB) plotted against the input power is a linear function up to the compression point. The slope of this line is constant with gain; that is, \(P_o \) (dBm) = \(P_i \) (dBm) + \(G \) (dB). The slope of the second-order line is equal to twice that of the fundamental; that is, for every 1 dB of increase in output fundamental power, the second-order output signal power increases by 2 dB. The slope of the third-order line is equal to three times that of the fundamental; that is, for every 1 dB of increase in output fundamental power, the third-order output signal power increases by 3 dB. If the fundamental plot is extended linearly beyond the 1 dB compression point, then this line will intersect the second- and third-order lines. The point where the second-order curve crosses the fundamental is called the second-order intercept point. The point where the third-order curve crosses the fundamental is called the third-order intercept point and is at the same point as the second-order intercept point. The intercept points are given in dBm. The intermod levels can then be calculated for a given signal level and can be graphically shown and calculated as shown in Figure 3-3.

The second-order intermod signal will be two times farther down the power scale from the intercept point as the fundamental. Therefore the
actual power level (in dB) of the second-order intermod is

\[IM_2 = IP_2 - 2(IP_2 - P_o), \]

where
- \(IM_2 \) = second-order intermod power level (in dBm),
- \(IP_2 \) = second-order intercept point,
- \(P_o \) = output power of the fundamental signal.

The third-order intermod signal will be three times farther down the power scale from the intercept point as the fundamental. Therefore the actual power level (in dB) of the third-order intermod is

\[IM_3 = IP_3 - 3(IP_3 - P_o), \]

where
- \(IM_3 \) = third-order intermod power level (in dBm),
- \(IP_3 \) = third-order intercept point,
- \(P_o \) = output power of the fundamental signal.

For example, suppose the second-order and third-order intercept points are at +30 dBm, the input power level is at −80 dBm, and the gain is at +50 dB. The signal output level would be at −30 dBm. The difference between the intercept points and the signal level is 60 dB. The following example shows what the intermod signal levels are.

Given:

- \(IP_2 = IP_3 = +30 \text{ dBm} \)
- \(P_i = −80 \text{ dBm} \)
- \(G = 50 \text{ dB} \)

Calculate:

\[P_o = G * P_i = 50 \text{ dB} + −80 \text{ dBm} = −30 \text{ dBm} \]
\[IP_2 - P_o = IP_3 - P_o = +30 \text{ dBm} - (−30 \text{ dBm}) = 60 \text{ dB} \]
\[P_o = IP_{(2,3)} - 1(IP_{(2,3)} - P_o) = +30 \text{ dBm} - 1(60 \text{ dB}) = −30 \text{ dBm} \]
\[IM_2 = IP_2 - 2(IP_2 - P_o) = +30 \text{ dBm} - 2(60 \text{ dB}) = −90 \text{ dBm} \]
\[IM_3 = IP_3 - 3(IP_3 - P_o) = +30 \text{ dBm} - 3(60 \text{ dB}) = −150 \text{ dBm} \]

Results:

- \(IM_2 = −90 \text{ dBm} − (−30 \text{ dBm}) = −60 \text{ dBc} \) (60 dB down from \(P_o \)).
- \(IM_3 \) is generally easy to filter out because second-order products are generally not in the passband.
- \(IM_3 = −150 \text{ dBm} − (−30 \text{ dBm}) = −120 \text{ dBc} \) (120 dB down from \(P_o \)).
Since the second-order signals can be generally filtered out, the third-order products are the ones that limit the DR of the system.

3.9 Calculating Two-Tone Frequency DR

A method of calculating DR is shown in Figure 3-4. This example is for third-order frequency DR. This method compares the input power levels to calculate DR. The input power that causes the output power, P_o, to be right at the noise floor is equal to P_1. This is the minimum input signal that can theoretically be detected. The input power, P_3, is the power that produces third-order intermod products at the same P_o which is at the noise floor. An increase in input power will cause the third-order spurs to increase above the noise (note that the spurs will increase in power faster than the desired signal level as input power is increased).

![Figure 3-4 Frequency dynamic range analysis.](image)

The equations below are simple slope equations:

$$
\frac{(P_o - IP_3)}{(P_1 - (IP_3 - G))} = 1
$$

$$
P_1 = P_o - G
$$

$$
\frac{(P_o - IP_3)}{(P_3 - (IP_3 - G))} = 3
$$

$$
P_3 = \frac{(P_o + 2IP_3 - 3G)}{3}.
$$
The difference in the input powers gives the DR of the system:

\[
DR = P_3 - P_1 = (P_o / 3 + 2IP_3 / 3 - G) - (P_o - G) = \frac{2}{3}(IP_3 - P_o)
\]

where

- \(P_o \) = noise floor = \(-174 + 10 \log B + NF + G - G_p \)
- \(DR = \frac{2}{3}(IP_3 + 174 - 10 \log B - NF - G + G_p) \),

Before the detector, the receiver NF bandwidth uses the smallest IF bandwidth for the calculation.

The above analysis gives the theoretical DR, but for the usable DR, a SNR needs to be specified. This requires the input power for the desired signal to increase sufficiently to produce the desired SNR (see Figure 3-4). Since the desired spur level is still at the noise floor, this is a direct subtraction (in dB) of the desired SNR:

\[
DR_a = P_3 - P_{1a} = \frac{2}{3}(IP_3 + 174 - 10 \log B - NF - G + G_p) - SNR.
\]

This is the third-order spurious-free dynamic range (SFDR).

From the same analysis, the second order usable DR is

\[
DR_a = \frac{1}{2}(IP_2 + 174 - 10 \log B - NF - G + G_p) - SNR.
\]

3.10 System DR

One concern in receiver system analysis is the determination of where the minimum DR occurs. In order to easily determine where this is, a block diagram of the receiver with the noise level and the saturation level is developed. This can be included as a parameter in the link budget, however, instead of cluttering the link budget, a separate analysis is usually performed. The outputs of the devices are listed with the noise level, the saturation level, and the calculated amplitude DR. This is shown in a spreadsheet (see Table 3-1).

The procedure is to list all of the power levels and noise levels at every point in the system. The estimated NF is established at the LNA, which
Table 3-1 Receiver dynamic range calculations.

<table>
<thead>
<tr>
<th>RECEIVER ANALYSIS FOR OPTIMUM DYNAMIC RANGE</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver</td>
<td>Gain/Losses</td>
<td>Sat. (dBm)</td>
<td>Noise (dBm)</td>
<td>IDR (dB)</td>
</tr>
<tr>
<td>RF BW (KHz x KTB)</td>
<td>100.00</td>
<td>-124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Components</td>
<td>2.00</td>
<td>50.00</td>
<td>-124</td>
<td>174.00</td>
</tr>
<tr>
<td>LNA Noise Figure (int.)</td>
<td>3.00</td>
<td>-121.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNA (Out)</td>
<td>30</td>
<td>7</td>
<td>-91.00</td>
<td>98.00</td>
</tr>
<tr>
<td>Filter (Out)</td>
<td>-2</td>
<td>50</td>
<td>-93.00</td>
<td>143.00</td>
</tr>
<tr>
<td>Mixer (Out)</td>
<td>-10</td>
<td>0</td>
<td>-103.00</td>
<td>103.00</td>
</tr>
<tr>
<td>IF Amp (Out)</td>
<td>50</td>
<td>7</td>
<td>-53.00</td>
<td>60.00</td>
</tr>
<tr>
<td>IF Bandwidth (kHz)</td>
<td>10</td>
<td></td>
<td>-63.00</td>
<td></td>
</tr>
<tr>
<td>IF Filter Loss</td>
<td>-2</td>
<td>50</td>
<td>-65.00</td>
<td>115.00</td>
</tr>
<tr>
<td>Baseband Mixer (Out)</td>
<td>-10</td>
<td>0</td>
<td>-75.00</td>
<td>75.00</td>
</tr>
<tr>
<td>A/D Converter (bits)</td>
<td>8</td>
<td>-27</td>
<td>-75.00</td>
<td>48.00</td>
</tr>
</tbody>
</table>

in turn estimates the relative noise floor. Note that the bandwidth of the devices is being used initially. If the bandwidth is narrowed down the line, then the noise is lowered by $10 \log B$. The top level is calculated by using either the 1 dB compression point or the third-order intercept point.

For the 1 dB compression point, the DR is calculated by taking the difference of the relative noise floor and this point. For the third-order intercept point method, the DR is calculated by taking $\frac{2}{3}$ of the distance between the relative noise floor and the intercept point (see the equations above). The minimum distance is found and from this point the gains are added (or subtracted) to determine the upper level input to the system. The difference between the input relative noise and the upper level input is the DR (see Figure 3-3). The overall input third-order intercept point is found by adding $\frac{1}{2}$ the input DR (refer back to the $\frac{2}{3}$s rule, where $\frac{1}{2}$ of $\frac{2}{3}$ is $\frac{1}{3}$, so the upper level input is $\frac{2}{3}$ of the intercept point).

Adding an AGC extends the DR of the receiver generally by extending the video and detection circuitry, as shown in Table 3-2. In order to determine the required AGC, two main factors need to be considered: the dynamic range of the ADC and the input variations of the received signals.

The DR of the ADC is dependent on the number of bits in the ADC. For an 8-bit ADC, the usable DR with a SNR of 15 dB is approximately 30 dB (theoretical is approximately 6 dB/bit = 48 dB). This establishes the range of signal levels that can be processed effectively. If the input variations of the received signals are greater than this range, then an AGC is required. If the IDR needs to be greater than the ADC range, then a feed-forward AGC needs to be implemented to increase IDR. A feed-forward AGC uses a part of the input signal to adjust the gain before the signal is received at the AGC amplifier, so there is no time associated with the response of the gain.
Table 3-2 Receiver dynamic range calculations using feedback AGC.

- Does not improve instantaneous dynamic range IDR
- Improves overall dynamic range DR

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Gain/Losses</th>
<th>SAT (dBm)</th>
<th>Noise (dBm)</th>
<th>IDR (dB)</th>
<th>DR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF BW (KHz x RTB)</td>
<td>100.00</td>
<td></td>
<td></td>
<td>-124</td>
<td></td>
</tr>
<tr>
<td>RF Components</td>
<td>2.00</td>
<td>50.00</td>
<td>-124</td>
<td>174.00</td>
<td>174.00</td>
</tr>
<tr>
<td>LNA Noise Figure (int.)</td>
<td>3.00</td>
<td></td>
<td>-121.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNA (Out)</td>
<td>30</td>
<td>7</td>
<td>-91.00</td>
<td>98.00</td>
<td>98.00</td>
</tr>
<tr>
<td>Filter (Out)</td>
<td>-2</td>
<td>50</td>
<td>-93.00</td>
<td>143.00</td>
<td>143.00</td>
</tr>
<tr>
<td>Mixer (Out)</td>
<td>-10</td>
<td>0</td>
<td>-103.00</td>
<td>103.00</td>
<td>103.00</td>
</tr>
<tr>
<td>AGC</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF Amp (Out)</td>
<td>50</td>
<td>7</td>
<td>-63.00</td>
<td>60.00</td>
<td>90.00</td>
</tr>
<tr>
<td>IF Bandwidth (kHz)</td>
<td>10</td>
<td></td>
<td></td>
<td>-63.00</td>
<td></td>
</tr>
<tr>
<td>IF Filter Loss</td>
<td>-2</td>
<td>50</td>
<td>-65.00</td>
<td>115.00</td>
<td>145.00</td>
</tr>
<tr>
<td>Baseband Mixer (Out)</td>
<td>-10</td>
<td>0</td>
<td>-75.00</td>
<td>75.00</td>
<td>105.00</td>
</tr>
<tr>
<td>A/D Converter (bits)</td>
<td>8</td>
<td>-27</td>
<td>-75.00</td>
<td>48.00</td>
<td>78.00</td>
</tr>
</tbody>
</table>

The amount of feed-forward AGC required is calculated by subtracting the ADC range from the input signal range.

The feedback AGC extends the DR but does nothing to the IDR, as shown in Table 3-2. The IDR tests the range in which the receiver can handle an instantaneous change (much quicker than the AGC response time) in amplitude on the input without saturation or loss of detection.

The IDR can be extended by using a feed-forward AGC or a log amplifier. The problem with a log amplifier is that the IDR is extended as far as amplitude, but since it is nonlinear, the frequency IDR may not improve, and might even worsen. The feed-forward AGC is faster than the signal that is traveling through the receiver. Therefore the IDR is improved for both amplitude and frequency and can be done linearly.

3.11 Tangential Sensitivity

For pulse systems, since the MDS is hard to measure, another parameter is measured, called tangential sensitivity (TSS), which is shown in Figure 3-5. The signal power is increased until the bottom of the pulse noise is equal to the top of the noise level in the absence of a pulse. A tangential line is drawn to show that the pulse noise is tangential to the rest of the noise. With this type of measurement, a comparison between receivers can be made. The TSS measurement is good for approximately ±1 dB.

Dynamic range is critical in analyzing receivers of all types. Depending on the particular design criteria, both amplitude and frequency DRs are important in the analysis of a receiver. Methods for determining DR need
Figure 3-5 Tangential sensitivity (TSS) for a pulse system.

to be incorporated in the design and analysis of all types of receivers. This is essential in optimizing the design and calculating the minimizing factor or device that is limiting the overall receiver DR. Graphical methods for calculating DR provide the engineer with a useful tool for analyzing receiver design. Both the DR and the IDR need to be considered for optimal performance. AGC can improve the receiver’s DR tremendously, but generally does not affect IDR. Feed-forward AGC and a log amplifier improve the IDR, however, the log amplifier is nonlinear and only improves the amplitude IDR, and actually degrades the frequency IDR. The MDS is hard to define and measure. Generally an SNR is specified to help define the MDS. For pulse systems, the tangential sensitivity is utilized to improve the measurement of MDS and to compare receivers.

3.12 Low-Noise Amplifier

An LNA is used in a receiver to help establish the NF, providing that the losses between gain elements are not too large and the bandwidth does not increase. Using the NF, the equation for calculating the receiver noise is

$$\text{Noise factor } F_s = F_1 + \frac{(F_2 - 1)}{G_1} + \frac{(F_3 - 1)}{G_1G_2} \ldots .$$

Therefore the NF would be

$$NF = 10 \log F_s \approx 10 \log F_1, \text{ if } G_1 \text{ is large.}$$
For example, given the following parameters:

LNA amplifier:
- $NF_1 = 6\, \text{dB}$, $F_1 = 4$
- $G_1 = 25\, \text{dB}$, $G_1 = 316$

Mixer:
- $L = 8\, \text{dB}$ (conversion loss), $L = 6.3$

IF amplifier:
- $NF_2 = 6\, \text{dB}$, $F_2 = 4$
- $G_2 = 20\, \text{dB}$, $G_2 = 100$

Due to the loss of the mixer, the overall gain from the output of the LNA to the next amplifier would be

$$G_1 - L = 25\, \text{dB} - 8\, \text{dB} = 17\, \text{dB} = 50$$

Therefore, the calculation for the NF of this receiver chain would be

$$F_s = 4 + (4 - 1)/50 = 4.06$$

$$NF = 6.08\, \text{dB}$$

An LNA also provides isolation between the LO used for downconversion and the antenna. This prevents LO bleed-through from appearing at the antenna port. This can be a problem for two reasons. If the system is designed for a low probability of intercept, then this LO signal is being transmitted from the antenna and can be detected. The other reason is this signal might interfere with other users.

Another benefit of using an LNA in the receiver is that less power is required from the transmitter if the NF is low. For a given desired SNR or E_b/N_0, the NF alters these according to the link budget, as specified in Chapter 1. In general, an LNA amplifies the desired signal with minimum added noise and establishes the receiver noise level.

Some reasons for not using an LNA in a system are as follows:

- Low-noise amplifiers reduce the DR of a receiver. For example, if the 1 dB compression point is $+10\, \text{dBm}$, the maximum input power to an LNA with a gain of $25\, \text{dB}$ is $-15\, \text{dBm}$. Without a preamp, the 1 dB compression for a low-level mixer is $+3\, \text{dBm}$. Also, the LO drive can be increased to provide an even higher DR without the LNA.
• The interference signals, clutter, and bleed-through from the transmitter may be more significant than the noise floor level, and therefore establishing a lower NF with an LNA may not be required.

• Cost, space, DC power consumption, and weight are less without a preamplifier.

• Some airborne radar systems use mixer front-ends (no preamp or LNA) to reduce weight.

The results show that an LNA gives a better NF, which results in better sensitivity at the cost of reduced DR, cost, and space. An LNA also provides isolation between the LO and the antenna. Also, the low NF established by the LNA decreases the power requirement for the transmitter. In general, an LNA in the receiver provides the best overall design and should be included and carefully designed for the best NF.

3.13 Downconversion

After the LNA, most receivers need to be downconverted to a lower frequency range for processing. This is accomplished by using an LO, a mixer, and a band-pass filter (BPF) or low-pass filter (LPF) to select the difference frequency, as shown in Figure 3-1.

Some systems get converted to baseband in the process and others include an IF, which requires a double downconversion. Double downconversion requires an additional LO, mixer, and filter to convert the signal to baseband. The double downconversion relaxes constraints on filters and allows for common circuitry for different systems. For example, a receiver operating at 1 GHz and another operating at 2 GHz could both downconvert the signal to a common IF of 50 MHz and the rest of the receiver could be identical.

Some of the newer receivers digitize the IF band directly and do a digital baseband downconversion before processing. This is especially true for quadrature downconversion using an I-channel or in-phase channel and a Q-channel or quadrature-phase channel. This relaxes the constraints of quadrature balance between the quadrature channels in the IF/analog portion of the receiver, since it is easier to maintain quadrature balance in the digital portion of the receiver and reduces hardware and cost.

Quadrature downconversion is a technique that is used to eliminate unwanted bands without filtering. For example, during a conversion process, both the sum and difference terms are created as shown:

$$A \cos (\omega_s t) + B \cos (\omega_c t) = AB/2 \cos (\omega_s + \omega_c)t + AB/2 \cos (\omega_s - \omega_c)t.$$
The receiver processes the incoming signal using a quadrature down-converter so that when the worst-case situation occurs with the \(\sin(\omega_c) \) multiplying, the quadrature channel will be multiplying with a \(\cos(\omega_c) \) so that the signal is recovered in either (or both) the I and Q channels as shown:

\[
I\ channel = [AB/2 \cos(\omega_s + \omega_c) + AB/2 \cos(\omega_s - \omega_c)] \sin(\omega_c) t
= AB/4[\sin(\omega_s + 2\omega_c) t + \sin(\omega_s - 2\omega_c) t]
= AB/4[\sin(\omega_s + 2\omega_c) t + \sin(\omega_s - 2\omega_c) t].
\]

\[
Q\ channel = [AB/2 \cos(\omega_s + \omega_c) + AB/2 \cos(\omega_s - \omega_c)] \cos(\omega_c) t
= AB/4[\cos(\omega_s + 2\omega_c) t + \cos(\omega_s) t]
= AB/4[\cos(\omega_s + 2\omega_c) t + \cos(\omega_s) t + \cos(\omega_s - 2\omega_c) t]
= AB/2 \cos(\omega_s) t + AB/4 \cos(\omega_s + 2\omega_c) t + AB/4 \cos(\omega_s - 2\omega_c) t.
\]

This shows all of the signal being received in the Q channel, \(\cos(\omega_c) \), and none in the I channel. Most of the time this will be a split, and the magnitude and phase will be determined when combining the I and Q channels. This quadrature technique uses carrier recovery loops when receiving a suppressed carrier waveform. For example, Costas loops, which are commonly used in direct sequence systems, use this technique to recover the carrier and downconvert the waveform into I and Q data streams.

3.1.4 Splitting Signals into Multiple Bands for Processing

Some receivers split the incoming signal into multiple bands to aid in processing. This is common with intercept-type receivers that are trying to determine what an unknown signal is. If the signal is divided up in multiple bands for processing, the signal is split up, but the noise remains the same if the bandwidth has not changed. Therefore the SNR will degrade each time the signal is split by at least 3 dB. However, if the signal is coherent, and is summed coherently after the split, then there is no change in the SNR except some loss in the process gain. Therefore careful examination of the required SNR and the type of processing used with this type of receiver will aid in the design.
3.15 Phase Noise

Phase noise is the noise generally associated with oscillators or phase-locked loops (PLLs). Phase noise is the random change in the phase or frequency of the desired frequency or phase of operation. The noise sources include thermal noise, shot noise, and flicker noise or $1/f$ noise.

The different types of phase and frequency noise and the causes that generate each of the processes and definitions are shown in Figure 3-6. The noise beyond about 10 kHz is dominated by white noise, which is generally referred to as kTB noise since it is derived using Boltzmann’s constant, temperature, and bandwidth. The $1/f$ noise or flicker noise is the dominant noise source from about 100 Hz to 10 kHz. This noise is produced by noisy electrical parts, such as transistors and amplifiers, and choosing a good LNA can help. The next type of noise, which is the dominant noise from about 20 Hz to 100 Hz, is white FM noise, caused by passive resonator devices such as cesium and rubidium. White FM noise it appears to change the frequency with respect to white noise and is designated as $1/ff$. The next type of noise is the physical resonance mechanism or the actual parts in oscillators, and is close to the carrier, about 5 Hz to 20 Hz. This type of noise is known as flicker FM and is designated as $1/ffe$. The closest noise to the actual carrier frequency is $1/ffff$ noise, which is caused by vibration, shock, temperature, and other environmental parameters. This is called random-walk FM and is very difficult to measure since it is so close to the carrier and requires very fine resolution.

![Figure 3-6 Phase noise analysis.](image-url)

Note: $S_o(f)$ = power spectral density (radians²/Hz) in dB down from carrier dBc/Hz (Log-Log Scale)
3.16 Mixers

Since the downconversion process requires a mixer, there are questions to be asked to ensure the right mixer is selected. Some of these questions are

- High-level or low-level mixers?
- High-side or low-side injection?
- Isolation—LO bleed-through?
- Level of spurious responses and intermods?

High-level mixers use higher voltages and require more power to operate than do the standard low-level mixers. The advantages of using high-level mixers include

- High third-order intercept point [less cross modulation, more suppression of two-tone third-order response, \((2f_1 - f_2) \pm LO \)].
- Larger DR.
- Lower conversion loss, better NF.
- Best suppression above the bottom two rows of the mixer spurious chart (see Figure 3-7).

![Figure 3-7](image)

Figure 3-7 Typical spurious chart for a high-level mixer.

Standard low-level mixers are used in most systems. The advantages of the low level mixers are the following:

- Less complex, easier to balance, giving better isolation, lower DC offset, and less mixer-induced phase shift.
- More covert or low probability of intercept, less LO bleed-through.
THE RECEIVER

- Less system power and less expensive.
- Best suppression of the bottom two rows of the mixer chart (see Figure 3-8).

\[
\begin{array}{cccccccc}
5 & 80 & 79 & 78 & 72 & 82 & 71 & x & x \\
4 & 88 & 80 & 90 & 80 & 90 & 82 & x & x \\
3 & 58 & 55 & 65 & 54 & 66 & 54 & x & x \\
2 & 69 & 64 & 71 & 64 & 73 & 61 & x & x \\
1 & 16 & 0 & 25 & 12 & 33 & 19 & x & x \\
0 & 24 & 30 & 37 & 41 & 34 & x & x \\
\end{array}
\]

Harmonics of f_L

Figure 3-8 Typical spurious chart for a low-level mixer.

Depending on the receiver application, these advantages need to be reviewed in order to make the best mixer selection.

Another consideration when selecting a mixer is whether to use high-side versus low-side injection. High side refers to the LO being at a higher frequency than the input signal frequency; low side refers to the LO being at a lower frequency than the input signal frequency. Some of the main points to consider in the selection are

- Performing a spurious signal analysis assists in determining the best method to use.
- High-side injection inverts the signal; lower sideband becomes upper sideband, which may cause some problems.
- Low-side injection provides a lower frequency for the LO, which may be easier to get and less expensive.
- The image frequency is different and analysis needs to be done to determine which of the image frequencies will affect the receiver the most.

Image reject mixers are sometimes used to reduce the image frequency without filtering. This is useful in a receiver system that contains a wide
bandwidth on the RF front-end and a narrow bandwidth IF after the mixer so that the image frequency cannot be filtered. This eliminates the need for double downconversion in some types of receivers. However, double down-conversion rejects the image frequency much better. This is generally a trade-off on the image frequency rejection and cost.

3.16.1 Mixer Spur Analysis

A mixer spur analysis is done for each mixer output to

- Determine which mixer products fall in the passband of the output.
- Determine the frequencies to be used in order to ensure that mixer spurs do not fall in the passband.

Spurious signals are generated when mixing signals up and down in frequency. They are the mixer products and are designated as $n \times m$-order spurs, where n is the harmonics of the LO and m is the harmonics of the RF or IF (the input of the mixer could be an RF signal or an IF signal depending on the frequency translation). These mixer spurs can cause problems if they fall in the passband, since they cannot be filtered.

A spurious analysis should be done to determine where the spurs are located—if they fall in the passband—and the power of the spur with respect to the desired signal. Several software programs have been written to assist in determining where the spurs are for a given system. These programs take two input frequencies and multiply them together, depending on the order specified, to generate the possibilities. For example, given this sixth-order system:

Sixth-order analysis (sums and differences need to be evaluated)

$1 \times 0 = \text{LO}$ $0 \times 1 =$ input carrier
$2 \times 0 =$ $0 \times 2 =$
$3 \times 0 =$ $0 \times 3 =$
$4 \times 0 =$ $0 \times 4 =$
$5 \times 0 =$ $0 \times 5 =$
$6 \times 0 =$ $0 \times 6 =$
$1 \times 1 =$ desired
$2 \times 1 =$ $1 \times 2 =$
$3 \times 1 =$ $1 \times 3 =$
$4 \times 1 =$ $1 \times 4 =$
$5 \times 1 =$ $1 \times 5 =$
$3 \times 2 =$ $2 \times 3 =$
$4 \times 2 =$ $2 \times 4 =$
$2 \times 2 =$ $3 \times 3 =$
The first number multiplies the LO and the second number multiplies the input and then the resultants are added and subtracted to determine the frequency of the spurs. Note that the 1×1 contains the desired signal and a spur, depending whether or not the wanted signal is the sum or the difference. Usually this is obvious and the unwanted signal is filtered out.

Selecting the right LO or specifying the operational frequencies for a selected level of spur rejection is done by comparing all the possible spur locations with respect to a given amplitude threshold. This is dependent on high-side, low-side, sum, or difference. Frequency selection depends on mixer spur analysis.

3.16.2 Sixth-Order Analysis

A sixth-order analysis is standard for spur analysis. This ensures that the spurious signals are about 60 dB down from the desired output for most mixers. The analysis below is for a sixth-order spur analysis with the desired signal being the difference frequency. The LO is higher in frequency than the highest desired frequency, which eliminates the spurs $2 \times 1, 3 \times 1, 4 \times 1, 5 \times 1, 3 \times 2,$ and 4×2.

The worst-case highest in-band frequency for the 1×0 spur would be $LO - f_l$. Since it is high-side injection, the 1×0 (LO) would always be greater than $LO - f_l$:

$$1 \times 0; \quad LO > LO - f_l.$$

This also applies for the following spurs: $2 \times 0, 3 \times 0, 4 \times 0, 5 \times 0, 6 \times 0$.

The worst-case lowest in-band frequency for the 1×0 spur would be $LO - f_h$. Since it is high-side injection, the 1×0 (LO) would always be less than $LO - f_h$:

$$1 \times 0; \quad LO < LO - f_h.$$

This also applies for the following spurs: $2 \times 0, 3 \times 0, 4 \times 0, 5 \times 0, 6 \times 0$.

Note: The bandwidth is from $LO - f_h$ to $LO - f_i$, which none of these spurs fall into.

The analysis continues for all possible spur products to see if they fall into the operating band. If they do, then the spur chart is examined to determine how big the spurious signal will be. If the design is to not allow any sixth-order products in the band, then each of the possible products must be calculated to ensure that none of them fall into the desired bandwidth. The same type of mixer analysis can be done for each mixer configuration to ensure that the spurious signals do not fall in the desired band and can be filtered out of the system.
Another point to make about mixers is that, in general, the VSWR for a mixer is not very good, about 2:1. If the source is 2:1, then, for electrical separation of greater than $\frac{1}{4}$ wavelength, the VSWR can be as much as 4:1. This is equivalent to having a mismatched load four times larger (or $\frac{1}{4}$ as large) than the nominal impedance.

3.17 Bandwidth Constraints

The bandwidth of the transmitted and received signal can influence the choice of IF bands used. The IF bandwidth is selected to prevent signal foldover. In addition, the IF bandwidth needs to reduce the higher frequencies to prevent aliasing. Also, the bandwidths need to be selected to relax design constraints for the filters.

For example, a direct sequence spread bandwidth is approximately 200 MHz wide. Since the total bandwidth is 200 MHz, the RF center frequency needs to be greater than twice the 200 MHz bandwidth so that the unwanted sidebands can be filtered. An RF of 600 MHz is chosen because of the availability of parts. This also provides sufficient margin for the filter design constraints. If the bandwidth is chosen so that the design constraints on the filters require the shape factor, or the frequency response of the filter, to be too large, then the filters may not be feasible to build.

Bandwidth plays an important function in the SNR of a system. The narrower the bandwidth, the lower the noise floor, since the noise floor of a receiver is related to $kTBF$, where B is the bandwidth.

3.18 Filter Constraints

The shape factor is used to specify a filter’s roll-off characteristics (see Figure 3.9). The shape factor (SF) is defined as

$$SF = \frac{f(-60\,\text{dB})}{f(-3\,\text{dB})}.$$

![Figure 3-9](typical filter response showing insertion loss and shape factor.)
where
\[f(-60 \text{ dB}) = \text{frequency that is 60 dB down from the center of the passband}, \]
\[f(-3 \text{ dB}) = \text{frequency that is 3 dB down from the center of the passband}. \]

For example:

\[SF = \frac{20 \text{ MHz}}{10 \text{ MHz}} = 2, \]

where
\[f(-60 \text{ dB}) = 20 \text{ MHz}, \]
\[f(-3 \text{ dB}) = 10 \text{ MHz}. \]

Note that these values may be evaluated at different levels for different vendors.

Typical achievable shape factors range from 2 to 12, although larger and smaller shape factors can be achieved. Shape factors as low as 1.05 can be achieved with crystal filters. Note that insertion loss generally increases as the shape factor decreases. Insertion loss ranges from 1.2 dB to 15 dB. Surface acoustic wave (SAW) filters achieve even a better shape factor at the expense of greater insertion loss and cost. They are also more prone to variations from vibration.

The percent bandwidth is used to specify the limitations of the ability to build a filter. The percent bandwidth is a percentage of the carrier frequency. For example, a 1% bandwidth for 100 MHz would be a 1 MHz bandwidth. This is usually specified as the 3 dB bandwidth. If the bandwidth is not specified, then the 3 dB bandwidth is used. Typical achievable bandwidths using crystal filters for 10 kHz to 200 MHz range from 0.0001% to 3%.

Filters are used primarily for out-of-band rejection. This helps to reduce interference and adjacent channel interference for multiple users. Many different types of filters can be used depending on the type of roll-off, phase distortion, passband characteristics, out-of-band sidelobes, etc. Some filters may have good roll-off characteristics but may experience sidelobes in the out-of-band response.

Caution needs to be used for filters that may act differently at higher frequencies, where the capacitors may look inductive and the inductors may look capacitive. This is usually specified at the resonance frequency of the passive component. The self-resonance frequency (SRF) of a component is where the impedance of the capacitance and the impedance of the inductance cancel out to provide a low resistive impedance. The SRF should be much higher than the frequency at which the part is going to be used.
Another consideration in selecting a filter is the amount of amplitude variation in the passband, known as passband ripple. For example, Butterworth filters have low passband ripple, whereas Chebyshev filters specify the passband ripple that is desired.

Insertion loss is another key design consideration. Generally the higher order filters and steeper roll-offs have higher insertion losses that have to be accounted for in the design of the receiver. A typical filter with a specified insertion loss and shape factor is shown in Figure 3.9.

3.19 Group Delay

Group delay is the measurement of the delay of the frequency components through a device or system. This is an important consideration for digital communications. Digital signals and waveforms are equal to a sum of multiple frequencies with different amplitudes that are specified using the Fourier series. As these frequencies propagate through the device or system, if all of the frequency components have the same delay, then they are said to have constant group delay and the output digital signal will be the same as the input digital signal. However, if these frequencies have different delays through the device or system, which is nonconstant group delay, then they will not add up correctly on the output and the output digital signal will be distorted (see Figure 3-10). This distortion is known as dispersion, and will cause intersymbol interference (ISI). This is where one symbol or digital signal interferes with another symbol or digital signal because they are spread out in time due to dispersion.

![Figure 3-10 Group delay for digital signals.](image-url)
Devices in a receiver such as filters do not have constant group delay, especially at the band edges (see Figure 3-11). Some filters are better than others as far as group delay; for example, Bessel filters are known for their constant group delay. Constant group delay and linear phase are related since the group delay is the derivative of the phase. Thus for linear phase, which means a constant slope, the group delay or the derivative of the constant slope is a constant number.

![Filter Response](image)

Figure 3-11 Group delay through a filter.

3.19.1 Group Delay Compensation

Some systems utilize group delay compensation to help mitigate the nonconstant group delay of a device or system. The basic technique measures the group delay/phase linearity of the device or system. Several components affect group delay, including filters, amplifiers, and narrowband devices. Once the measured group delay has been obtained, an all-pass phase linearizer/group delay compensator is designed (see Figure 3-12).
These compensators have no effect on magnitude, only phase, with their poles and zeros spaced equally and opposite of the \(j\omega \) axis. The next step is to convolve the curves of the measured group delay and group delay compensator to produce a constant group delay for the system (see Figure 3-13).

3.20 Sampling Theorem and Aliasing

Nyquist states that an analog function needs to be sampled at a rate of at least two times the highest frequency component in the analog function to recover the signal. If the analog function is sampled less than this, aliasing will occur.

When a signal is sampled, harmonics of the desired signal are produced. These harmonics produce replicas of the desired signal (positive
Constant Group Delay
Filter Response
Group Delay
Compensator

Figure 3-13 Group delay compensator resulting in a constant group delay.

and negative frequencies) in the frequency domain at 1/T_s intervals. When the analog signals are undersampled, the harmonics of the repeated signal start to move into the passband of the desired signal and produce aliasing. Anti-aliasing or pre-aliasing filters can eliminate this problem for digital sampling and transmissions.

3.21 Anti-Aliasing Filter

A filter is required before any sampling function to prevent aliasing of the higher frequencies back into the desired signal bandwidth (see Figure 3-14). This filter is required to filter the high frequencies above the Nyquist criteria. The Nyquist criteria states that the sample rate needs to be twice the highest frequency component in the desired signal, and that all frequencies higher than that need to be filtered out. This filter is called an anti-aliasing filter. To illustrate the concept, if the highest frequency of the
desired signal is 1 MHz, then the sample rate required is 2 million samples per second (Msps). If this frequency is sampled at this rate, the output of the sampler would be alternating plus and minus values at a 2 Msps rate (see Figure 3-14). The reconstruction of the samples would produce a 1 MHz frequency. If there is an incoming signal at a higher frequency and it is sampled at the same rate (undersampled according to the Nyquist rate), then the output would produce a frequency that would appear as a lower frequency than the actual input frequency (see Figure 3-14). This reconstructed frequency could fall into the desired signal bandwidth and interfere with the correct signal.

In some systems, this Nyquist undersampled technique is controlled and used to process desired signals at higher frequencies by undersampling. This allows for the sample rate of the detector to be slower and provides a means of processing much higher frequency signals with slower clocks. This can reduce cost and increase bandwidths for the detection process. For example, if the desired signal is the high-frequency signal in Figure 3-14, then the resultant aliased low-frequency signal would be the desired signal and is detected by this lower sample rate detector. However, careful design is needed so that unwanted signals do not alias and cause interference with the desired signal.
3.22 Analog-to-Digital Converter

An ADC is a device that samples the analog signal and converts it to a digital signal for digital processing. The ADC has to sample at least as fast as the Nyquist rate, or twice as fast as the highest frequency component of the signal. One of the problems that occurs when an analog signal is digitized is the resolution of the step size. The error associated with the step is called the quantization error.

As the signal becomes smaller in a linear ADC, the error becomes larger. Note that if the signal is large, the quantization errors in both the I and Q channels produce a small change in amplitude and phase. The phase error is just a few degrees and the amplitude is a very small percentage of the actual amplitude, as shown in Figure 3-15. As for the smaller signal, quantization error in the I and Q channels produces a large error in phase.

![Linear A/D Converter and Ideal A/D Converter](image)

Ideal A/D Converter percent error is reduced for lower level signals
µ-law and linear approximation designed to approximate Ideal A/D converter

Figure 3-15 Quantization error for large and small signals using a linear versus an ideal ADC.

Most ADCs are linear, which makes it harder to detect smaller signals. To improve the sensitivity of the ADC, a log amplifier is sometimes used before the ADC or an ADC with a log scale (µ-law) is used. This gives a higher response (gain) to lower level signals and a lower response (gain) to higher level signals and approximates the ideal ADC (see Figure 3-15).

Another way to improve the sensitivity of lower level signals is to use a piecewise linear solution where there are multiple ADC stages with different scaling factors. Each finer resolution stage is set to cover the LSBs of the previous ADC. This method provides a large DR while still being a linear process. Also, a piecewise µ-law solution can be used to increase the DR of the ADC, however, this would not be a linear solution.
3.23 Digital Signal Processing

Once the analog signal is converted by the ADC to a digital signal, the digital signal processor finishes the reception by interpreting the data. Many receivers use DSP technology to accomplish most of the detection function. The RF/analog portion of the receiver is only used to downconvert the signal to a lower IF or baseband, spectrally shape the signal, and then convert it to the digital domain, where the remaining processing is digital. This enables the receiver to be configured for many receive applications and configurations for different waveforms by simply changing the software that drives the digital receiver.

Digital signal processing can do everything that analog processing can do, with the only limitation being the processor throughput required to sample fast enough for the frequency content of the signal. In conclusion, the sooner the signal can be processed digitally, the better.

3.24 Summary

The receiver is an important element in the transceiver design. The receiver accepts the signal in space from the transmitter and amplifies the signal to a level necessary for detection. The LNA is the main contributor to the NF of the system. The superheterodyne is the most used receiver type and provides the most versatility by being able to apply a common IF. Saturation, compression, sensitivity, DR, reduction in unwanted spurious signals, and maximization of the SNR are the main concerns in designing the receiver. Mixers perform the downconversion process using spur analysis and selecting the correct mixer for the application. Two types of DR include amplitude, which is the most common way to express DR, and frequency DR, related to the two-tone third-order intercept point. Group delay plays an important role in digital communications and careful consideration in the design will help reduce dispersion and ISI. Digital receivers perform most of the detection in data links today, and the ADC is used to translate an analog signal into the digital domain. The sooner the signal is in the digital domain, the better the receiver can optimize the detection process.

References

Problems

1. What is placed in the transceiver that prevents the transmitted signal from entering the receiver on transmit?

2. What is the gain required by the receiver for a system that has an 8-bit ADC, maximum of 1 V, NF of 3 dB, bandwidth of 10 MHz, and source noise of 4 dB?

3. What is the third-order SFDR of the system in problem 2 with a +20 dBm IP_3?

4. What is the usable DR of the system in problems 2 and 3 with a required SNR of 10 dB?

5. What is the NF without using an LNA with an IF NF of 3 dB and the total loss before the IF of 10 dB?

6. Calculate all intermodulation products up to third order for 10 MHz and 12 MHz signals.

7. What is the shape factor for a filter with 0 dBm at 90 MHz, −3 dBm at 100 MHz, and −60 dBm at 120 MHz?

8. Find the required sample rate to satisfy the Nyquist criteria if the highest frequency component is 1 MHz?

9. What would be the maximum amplitude and phase error on a linear ADC using 2 bits of resolution?

10. What are the advantages and disadvantages for oversampling a received signal?

11. Why is constant group delay important in digital communications? What is the result if the group delay is not constant?

12. What does LNA stand for? Why is it important?

13. What happens if a system samples the input signal at less than the Nyquist rate for the highest frequency content?

14. Why is each bit of an ADC equal to 6 dB?
AGC Design and PLL Comparison

Automatic gain control (AGC) is used in a receiver to vary the gain in order to increase the dynamic range (DR) of the system. AGC also helps deliver a constant amplitude signal to the detectors with different radio frequency (RF) signal amplitude inputs to the receiver. AGC can be implemented in the RF section, the intermediate frequency (IF) section, in both the RF and IF portions of the receiver, or in the digital signal processing circuits. Digital AGCs can be used in conjunction with RF and IF AGCs. Most often the gain control device is placed in the IF section of the receiver, but placement depends upon the portion of the receiver that limits the DR. The detection of the signal level is usually carried out in the IF section before the analog-to-digital converter (ADC) or analog detection circuits. Often the detection occurs in the digital signal processing (DSP) circuitry and is fed back to the analog gain control block. The phase-locked loop (PLL) is analyzed and compared to the AGC analysis, since both processes incorporate feedback techniques that can be evaluated using control system theory. The similarities and differences are discussed in the analysis. The PLL is used for tracking conditions and not for capturing the frequency or when the PLL is unlocked.

4.1 AGC Design

An AGC adjusts the gain of the receiver automatically. It is used to increase the DR of the receiver by adjusting the gain depending on
the signal level; large signals need less gain, small signals need more gain.

There are different types of AGC designs. The most common AGC is a feedback AGC, where the signal level is detected and processed, and a signal is sent back to the AGC amplifier or attenuator to control the gain. It uses the feedback of the received signal to adjust the gain. Another type of AGC is known as a feed-forward AGC. This type of AGC detects the signal level and adjusts the gain further down the receiver chain. This type of AGC uses feed forward, not signal feedback, and is used for high-speed control. Another type of control is dependent on time. This type of control is called a sensitivity time constant (STC) and is used in radar systems. For example, the change of gain is proportional to \(1/t^2\) or other criteria that are dependent on the desired output and response. These types of gain control are shown in Figure 4-1.

![Diagram of AGC types](image_url)

Figure 4-1 Different types of AGCs used in receivers.
For the feedback AGC, the RF signal is downconverted and amplified, and the output is split and detected for use in the AGC to adjust the gain in the IF amplifiers. A voltage-controlled attenuator or variable gain amplifier, plus a linearizer, may be used for the actual control of the signal amplitude. The AGC voltage can be used to display the received power with an accuracy of about 0.5 dB by translating AGC volts to a received power equivalent which can be shown on a display or monitored by a personal computer (PC).

The requirements for AGC in a system are established by using several parameters to determine the amount of expected power fluctuations that might occur during normal operation. Some of the parameters that are generally considered include the variation in distance of operation, propagation loss variations such as weather and fading, multipath fluctuations, variations in the antenna pattern producing a variation in the gain/loss of the antenna in comparison to a true omnidirectional antenna, and expected power fluctuations due to hardware variations in both the transmitter and the receiver.

A typical AGC used in receivers consists of an AGC amplifier and a feedback voltage to control the gain. A voltage-controlled attenuator can be used in place of the AGC amplifier; however, the noise figure (NF) of the receiver can be changed if the attenuation is large. This feedback system can be designed using basic control system theory.

The basic model is shown in Figure 4-2a. This model is set up with the maximum gain from the AGC amplifier taken out of the loop as a constant and the feedback loop subtracts gain from this constant depending on the detected signal level.

The feedback system is redrawn to show the point at which the stability analysis is done, as shown in Figure 4-2b. This determines the stability of the AGC loop, and the feedback gain is then equal to unity, which makes it more convenient to perform the analysis using feedback control theory.

4.2 AGC Amplifier Curve

The first step in designing an AGC is to determine the amount of gain control needed. This may be given directly, or it can be calculated given the receiver’s range of operation. Sometimes a compression ratio (range of the signal in versus range of the signal out) is provided. This will determine which AGC amplifier is needed.

Once the AGC amplifier is selected, the gain (dB) versus the control voltage (V) slope of the AGC amplifier is determined. The best way to do this is actual measurements in the lab, although some companies will furnish this curve in their data sheets. This slope is generally nonlinear. The AGC
Constant Gain

Signal Output

Detector

Filter

Threshold

Integrator

AGC Amplifier Curve

a. Control system for the AGC.

Signal Output

Detector

Filter

Threshold

Integrator

AGC Amplifier Curve

b. Control system analysis for the second order AGC closed loop response.

Figure 4-2 AGC block diagrams used in the control system analysis.
amplifier should be chosen so that the gain versus control voltage is as linear as possible, allowing the loop gain and noise bandwidth to remain stable as the control voltage is changed. An estimated linear slope can be applied depending on the design criteria. An example of an amplifier curve and an estimated linear slope is shown in Figure 4-3.

![Amplifier Curve](image)

Figure 4-3 Typical gain versus control voltage for an AGC amplifier.

The slope is in dB/V and is used in the loop gain analysis. The estimated linear slope should be chosen where the AGC is operating most of the time. However, the AGC system should be designed so that it does not become unstable across the entire range of operation. The gain constant may be chosen at the steepest portion of the slope so that the loop gain will always be less than this gain value. This will cause the response time outside this approximation slope of the AGC to be longer (smaller bandwidth), which means the noise in the loop will always be less. Therefore, since the bandwidth can only get smaller, the reduction of desired modulation will always be smaller. Unless a slower response time presents a problem (as in the case of fading when a very slow AGC is used), this design criteria can be used in many situations.
4.3 Linearizers

Linearizers can be used to compensate for the amplifier’s nonlinearity and create a more constant loop gain response over the range of the amplifier. A linearizer is a circuit that produces a curve response that compensates the nonlinear curve such that the sum of the two curves results in a linear curve (see Figure 4-4). Note that the linear response is on a linear (V) versus log (P) scale.

![Linearizer Circuit Diagram](image)

\[
\begin{align*}
m_1 &= -RF \left(\frac{R_1 + R_2 + R_3}{R_1(R_2 + R_3)} \right) \\
m_3 &= -RF \left(\frac{R_1 + R_4}{R_1R_4} \right) \\
m_2 &= -RF / R_1 \\
V_a &= V_f \left(\frac{R_2 + R_3}{R_3} \right) \\
V_b &= V_f \left(1 + \frac{R_4}{R_5} \right) + V_s \frac{R_4}{R_5} \\
V_f &= .7 \text{ V}
\end{align*}
\]

Figure 4-4 Linearizer circuit to compensate for a nonlinear response.
A linearizer can be designed by switching in diodes in a piecewise fashion, which alters the gain slope to compensate for the AGC amplifier gain curve. As the diodes are switched on, they provide a natural smoothing of the piecewise slopes due to the slope of the diode curve itself. This allows for fairly accurate curve estimations. Note that in Figure 4-4 the signs of the slopes have been neglected for simplicity. Care needs to be taken to ensure the correct sense of the loop to provide negative feedback.

4.4 Detector

The next step is the detector portion of the AGC. The sensitivity (gain) of the detector along with the linearity of the curve (approaching a log of the magnitude-squared device) are important parameters in selecting the detector. The linear section of the detector can be chosen on the “square-law” portion of the curve (low-level signal) or the “linear” portion of the curve (high-level signal). The output power or voltage of the AGC is given or chosen for a particular receiver. The operating point can influence the choice of the detector used. The detector provides a voltage-out (V)/power-in (dBm) curve, or V/dB slope, that can be measured or given. The power in is an actual power level and is given in dBm. The change of power-in levels is a gain or loss given in dB. Therefore the slope is a change of power-in levels and is given as V/dB not V/dBm. The ideal detector needs to be linear with respect to

\[V_o = \log[V_i^2] \text{ (log square law slope)} \]

The slope can be calculated if the detector is ideal:

\[(V + dV) - (V - dV) / [2 \log(V + dV) / V - 2 \log(V - dV) / V] \]

where

- \(V \) = operating voltage level of the detector,
- \(dV \) = small variation of the operating voltage level.

Note that if the detector is linear with respect to

\[V_o = \log[V_i] \text{ (log slope)} \]

the difference in the slope is a scale factor (2).

An amplifier stage with a gain of two following this detector would make it equal to the previous detector. A linearizer could be designed to compensate for either slope.
A linearizer design is shown in Figure 4-4. This method uses diode activation to set the break points of the curves, and the diode turn-on characteristics smooth the curves to a very close approximation of the desired curve.

The slope of a real detector is not linear. However, the slope is chosen so that it is linear in the region in which it is operating most of the time (see Figure 4-5). This provides another part of the loop gain, given in V/\text{dB}.

Figure 4-5 Using a linearizer curve to obtain a linear response for amplifier control.
The nonlinearity of the detector will change the instantaneous loop gain of the feedback system. However, unless the system goes unstable, this is generally not a problem because the operating level to the diode is held constant by the AGC. Since the diode will always be operating in steady state at one point on the curve, the importance of linearization is not significant compared to the AGC amplifier linearization.

A linearizer can be used to help create a more linear slope from the detector so that the loop gain is more constant. If the modulating signal is large compared to the nonlinearity of the diode curve, there could be some distortion of the modulating signal. Also, there might be some distortion when the signal is on the edge of the AGC range of operation.

The resistor-capacitor (RC) time constant following the diode should be much larger than the period of the carrier frequency and much smaller than the period of any desired modulating signal. If $1/RC$ of the diode detector approaches the loop time response, then it should be included in the loop analysis. If $1/RC$ is greater than an order of magnitude of the loop frequency response, then it can be ignored, which is generally the case.

Since an AGC is generally not attempting to recover a modulating signal, as in AM detection, failure-to-follow distortion is not considered. However, if the rate of change in amplitude expected is known, then this can be used as the modulating signal in designing for the response time. If a modulating signal (like a conical scan system produces to achieve angle information) is present, the total AGC bandwidth should be at least 10 times smaller to prevent the AGC from substantially reducing the conical scan modulating frequency. Here again, this depends on the design constraints. The modulation is actually reduced by $1/(1 + \text{loop gain})$. This is the sensitivity of the loop to the frequency change of the input.

A standard diode can be used to detect the signal. This is a common silicon diode, and the response of the diode is shown in Figure 4-6. Notice that this diode needs to be biased on, since the turn-on voltage is approximately 0.7 V for a silicon diode.

Another type of diode that can be used to detect the signal is called a back diode. A back diode provides very good sensitivity as a detector and uses the negative (back-biased) portion of the curve for detection (see Figure 4-6). This detector operates well in the presence of low-level signals and requires no bias voltage for the diode since the operating region begins at zero.

The amplifier before the detector needs to be capable of driving the detector. A buffer amplifier can be used to supply the necessary current as well as to isolate the received signal from the loading effects of the detector. With a power divider and high-frequency detectors, this may not be a problem. The detector is matched to the system and the AGC amplifier output can drive the detector directly through the power divider.
4.5 Loop Filter

A loop filter needs to be designed to establish the frequency response of the loop and to stabilize the loop. The loop filter should follow the detector to prevent any high-frequency components from affecting the rest of the loop. A passive phase-lag network (lag-lead according to Gardner) is used. The schematic consists of two resistors and a capacitor, and is shown in Figure 4-7 along with the transfer function. This filter provides a pole and a zero to improve the stability of the loop. This filter is used to affect the attenuation and the roll-off point, since the phase shift for a phase lag filter generally has a destabilizing effect.

4.6 Threshold Level

A threshold needs to be set to determine the power level output of the AGC amplifier. A voltage level threshold in the feedback loop is set by comparing a stable voltage level with the output of the loop filter. This sets the power level out of the AGC amplifier. A threshold level circuit consists of an operational amplifier with a DC offset summed in (see Figure 4-7).
AGC DESIGN AND PLL COMPARISON

\[V_2/V_1 = T_2/(T_1 + T_2)\left[\frac{(S + 1/T_2)(S + 1/(T_1 + T_2))}{(S + 1/T_1 + T_2)}\right] \]

where \(T_1 = R_1C_1 \) & \(T_2 = R_2C_1 \)

a. This is a lag filter providing a zero and a pole.

\[V_o = -(R_5/R_6)V_i - (R_5/R_4)V_{dc} \]

b. This is a threshold amplifier summing in the offset voltage which determines the AGC output level.

\[V_o/V_i = -1/(T_3S) \]

where \(T_3 = C_3R_3 \)

c. This is an integrator to make the system a type 1 feedback system.

Figure 4-7 Loop filter components.

In this case, if the output of the loop filter is less than the offset, then the output of the threshold device will be negative. If the loop filter output is greater than the offset, the output will be positive. This determines which way the gain is adjusted. The offset is equal to \(- (R_5/R_4)V_{dc}\), as shown in Figure 4-7.

An additional gain is added to the loop and is selected for the particular AGC signal level and diode gain. This gain should be large enough to increase threshold sensitivity, but small enough to prevent saturation of the loop amplifiers. The gain constant is defined as \(K_c \) and is equal to \(- (R_5/R_6)V_1\) (see Figure 4-7).

4.7 Integrator

With just the phase-lag filter in the loop, the system is classified as a type 0 system and there will be a steady-state error for a step response.
If an integrator is included in the feedback loop, then the system is a type 1 system and the steady-state error for a step response is zero. Therefore an integrator is included in the loop. An integrator, using an operational amplifier, is shown in Figure 4-7. The output of the threshold device is integrated before controlling the gain of the AGC amplifier. With no signal present, the integrator will integrate to the rail of the operational amplifier (op amp) and stay there until a signal greater than the threshold is present. The AGC amplifier is held at maximum gain during this period of time, which is the desired setting for no signal or very small signals. The response time for the op amps to come out of saturation is negligible compared to the response time of the loop. If the voltage level out of the loop amplifiers is too large for the AGC amplifier, then a voltage divider or a voltage clamp should be used to protect the AGC amplifier. The DC gain of the integrator should not be limited by putting a resistor in parallel with the feedback capacitor or there will be a steady-state error. This makes the loop a second-order system and is easily characterized by using control system theory.

Most systems today use DSP techniques to detect the signal level and then provide feedback to control the gain of the amplifier or adjust the attenuator value. This is a feedback loop with the potential to oscillate, so careful design using control theory analysis is needed. This analysis includes the time delays, frequency responses, and gains through the digital circuitry path.

4.8 Control Theory Analysis

The open-loop transfer function including the integrator is

\[T_{\text{sol}} = \frac{K_a K_d K_c T_2}{T_3(T_1 + T_2)S(S + \frac{1}{T_1 + T_2})} \]

where
- \(K_a \) = AGC amplifier loop gain,
- \(K_d \) = detector loop gain,
- \(K_c \) = gain constant,
- \(T_1 = R_1 \times C_1 \),
- \(T_2 = R_2 \times C_1 \),
- \(T_3 = R_3 \times C_3 \),
- \(T_{\text{sol}} \) = open-loop transfer function,
- \(S = j\omega \) (assumes no loss).
The closed-loop response is:

\[\frac{G(s)}{1 + G(s)} \text{ with } H(s) = 1 \]

\[T_{ccl} = \frac{K \left(S + \frac{1}{T_2} \right)}{S^2 + \left(\frac{1}{T_1 + T_2 + K} \right) S + \frac{K}{T_2}} \]

where

\[K = K_a K_d K_c \left(\frac{1}{T_3} \right) \left(\frac{T_2}{T_1 + T_2} \right), \]

\[T_{ccl} = \text{closed-loop transfer function.} \]

From control system theory for the second-order system above:

\[2\zeta \omega_n = K + 1/(T_1 + T_2) \]

and

\[\omega_n^2 = K/T_2, \]

where

\[\omega_n = \text{natural frequency of the system}, \]

\[\zeta = \text{damping ratio}. \]

The transfer functions and the block diagram of the analysis are shown in Figure 4-8.

The natural frequency, \(\omega_n \), should be set at least 10 times smaller than any desired modulating frequency. The damping ratio is chosen so the system responds to a step function as fast as possible within a given percent of overshoot. With a 5% overshoot (PO), the minimum damping ratio is 0.707. This means the system is slightly underdamped. The damping ratio is chosen depending on the design criteria. If the overshoot is too high, the damping ratio should be changed. Once the damping ratio and the natural frequency are chosen for a system, the time constants can be solved mathematically.

Suppose the conical scan information modulation frequency of a radar system is equal to 30 Hz. The loop frequency response needs to be an order of magnitude less so that it does not interfere with the positioning information. Therefore the loop frequency response is less than 3 Hz so that the AGC does not track out the angle information. The following choices are made:

Choose \(f_n = 1.6 \text{ Hz} \) \(\omega_n = 10 \text{ rad/sec}. \)
Choose \(\zeta = 0.707 \text{ PO = } 5\% \).
Control system analysis for the second order AGC closed loop response.

Open Loop Transfer Function = \(T_{\text{ol}} = G(s) = \frac{K_d}{\tau_1 s + 1} \)

Closed Loop Transfer Function = \(T_{\text{cl}} = \frac{G(s)}{1 + G(s)H(s)} = \frac{K_d}{\tau_1 s + 1} \)

Figure 4-8. Transfer functions and block diagram used in the analysis of the AGC.
The poles and zeros for the root locus criteria are found by using $G(s)H(s)$. Note that $1/T_2$ determines the zero location for both the open-loop and closed-loop cases, since $H(s) = 1$. The zero is placed at $-2\zeta \omega_n$ and the root locus plot is shown in Figure 4-9.

![Root locus plot for AGC analysis.](image)

Figure 4-9 Root locus plot for AGC analysis.

This moves the root locus, the migration of the poles, away from the $j\omega$ axis to prevent oscillatory responses with a change in gain. This also places the poles on the tangent of the root locus circle at the given damping ratio, so that as the gain varies, the damping ratio is always greater. One pole, due to the integrator, migrates from the $j\omega$ axis along the σ axis as the loop gain constant K increases. As K approaches zero, the pole due to the integrator lies on the $j\omega$ axis. This is something to keep in mind when designing with nonlinear devices. As the loop gain decreases, the integrator pole migrates closer to the $j\omega$ axis and becomes more oscillatory. However, a pole on the axis means that the system is overdamped ($\zeta > 1$) and will not oscillate. The only way this system can become unstable is with stray poles close to the origin, which is unlikely. The loop gain K is chosen in this
example, so the operating point lies on the root locus circle with the desired damping factor (see Figure 4-9).

4.8.1 AGC Design Example

An example for an AGC design is shown in Figure 4-10. The parameters for this example are

\[
\omega_n = 10 \\
\zeta = 0.707 \\
K_n = 15 \\
K_d = 0.15 \\
K_c = 6.27.
\]

Choose the zero location:

\[
T_2 = 1/(2\zeta \omega_n) = 1/(14.14) = 0.0707.
\]

Using the root locus equations above:

\[
K = T_2 \omega_n^2 = 0.0707(10)^2 = 7.07 \\
2\zeta \omega_n = K + 1/(T_1 + T_2).
\]

Solving for \(T_1\):

\[
T_1 = 1/(2\zeta \omega_n - K) - T_2 = 1/(14.14 - 7.07) - 0.0707 = 0.0707.
\]

Using the total loop gain expression to solve for \(T_3\):

\[
K = K_nK_dK_c(1/T_3)(T_2/[T_1 + T_2])
\]

\[
T_3 = K_nK_dK_c(T_2/[T_1 + T_2])/K = 15(0.15)(6.27)((0.0707)/(0.0707 + 0.0707))/7.07 = 1.0.
\]

Once the time constants are solved, the selection of the resistors and capacitors is the next step. Low-leakage capacitors are preferred and the resistors should be kept small. This is to prevent current limiting of the source by keeping the current large compared to the current leakage of
2ND ORDER AGC DESIGN:

Enter Constants:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tclosed loop</td>
<td>(\frac{K(S + 1/T2)}{S^2 + (1/(T1 + T2) + K)S + K/T2})</td>
</tr>
<tr>
<td>Choose damping ratio</td>
<td>(z = 0.707)</td>
</tr>
<tr>
<td>Choose natural frequency</td>
<td>(f_n = 10 \text{ Hz})</td>
</tr>
<tr>
<td>AGC amplifier loop gain</td>
<td>(K_a = 15 \text{ dB/Volt})</td>
</tr>
<tr>
<td>Detector Loop Gain</td>
<td>(K_d = 0.15 \text{ Volt/dB})</td>
</tr>
<tr>
<td>Other component Gain</td>
<td>(K_c = 10 \text{ Volt/Volt})</td>
</tr>
</tbody>
</table>

Calculations:

Detector Design:

The zero is set at 2zwn T2 = 0.011256 sec

\[2zwn = \frac{K + 1/(T1+T2)}{T2} \]

Solve for T1 = 1/(2zwn-K)-T2 T1 = 0.011262 sec

Detector time constant should be much faster than the AGC response time of the feedback loop or it needs to be included

K = KaKdKc(T2/(T1 + T2)) T3 = 0.253099 sec and much slower than the RF frequency.

Enter Values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency</td>
<td>0.05 MHz</td>
</tr>
<tr>
<td>Time constant</td>
<td>200 us</td>
</tr>
<tr>
<td>Choose C1</td>
<td>1 uf</td>
</tr>
<tr>
<td>Choose C2</td>
<td>1 uf</td>
</tr>
<tr>
<td>Choose C3</td>
<td>1 uf</td>
</tr>
<tr>
<td>R9</td>
<td>5000 ohms</td>
</tr>
<tr>
<td>R10</td>
<td>2 kohms</td>
</tr>
</tbody>
</table>

Calculations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>11.26246 kohms</td>
</tr>
<tr>
<td>R2</td>
<td>11.25565 kohms</td>
</tr>
<tr>
<td>R3</td>
<td>253.0992 kohms</td>
</tr>
<tr>
<td>R4</td>
<td>126.5496 kohms</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>3.005689 kohms</td>
</tr>
<tr>
<td>R8</td>
<td>12.5496 kohms</td>
</tr>
</tbody>
</table>

Offset Design:

Choose dBm out = 5 dBm

Detector input = 2 dBm

Detector output = 0.995267 Vrms

Distortion on Signal:

Choose freq. of operation = 25 kHz

Frequency in radians = 157079.6

R6 = 0.5 kohms

Tclosed loop = \(\frac{K(S + 1/T2)}{S^2 + (1/(T1 + T2) + K)S + K/T2} \)

Numerator Real = 3947.842

Numerator Imag = -977416

Denominator Real = -2.5E+10

Denominator Imag = 20928878

Closed Loop Mag = 0.000283

% affecting signal = 0.028289

Figure 4-10 An example of an AGC design.
the capacitor. There are trade-offs here, depending on parts available and values needed.

Choose $C_1 = C_3 = 1 \mu F$

$T_1 = R_1C_1$ therefore $R_1 = T_1/C_1 = 0.0707/1\mu F = 70.7k\Omega$

$T_2 = R_2C_1$ therefore $R_2 = T_2/C_1 = 0.0707/1\mu F = 70.7k\Omega$

$T_3 = R_3C_3$ therefore $R_3 = T_3/C_3 = 1.0/1\mu F = 1M\Omega$.

A block diagram showing the design of the AGC is shown in Figure 4-11.

4.9 Modulation Frequency Distortion

The reduction of the modulating frequency (e.g., the conscan frequency information in the preceding example) is calculated by solving the closed-loop transfer function for the modulating frequency ω_m.

$\omega_m = 188.5 \text{ rad/sec}$

$T_{\text{closed loop}} = 7.05(j188.5 + 14.14)/[(j188.5)^2 + 14.14(j188.5) + 100] = 100 + j1329/(-35.432 + j2665) = 0.04/-90 \text{ degrees}$.

The 0.04 number means that for an input gain change of a signal level at the modulating frequency ω_m, the AGC amplifier will change its gain by 0.04 of the input gain change. The modulating signal is reduced by 0.04 times the input gain change in dB.

For example, if the input signal level changes from 0 dBm to 10 dBm at the modulating frequency, the input gain change is 10 dB. The feedback loop response reduces the 10 dB change by a magnitude of say 0.04 or 0.4 dB. This means the AGC amplifier changes gain by 0.4 dB for an input change of 10 dB. However, since there is a phase shift of the feedback signal, the amplitude reduction will be less since it is associated with the cosine of the angle. In equation form we can write:

\[
\text{Signal input} = P_{in}[\text{dBm}] + A \cos(\omega_m t)[\text{dB}]
\]

\[
\text{Signal output} = P_{in}[\text{dBm}] + A \cos(\omega_m t)[\text{dB}] - HA \cos(\omega_m t + C)[\text{dB}],
\]

where

$A = $ amplitude of the modulating signal (conscan),

$H = $ amplitude through the feedback loop,

$C = $ phase shift through the loop,

$t = $ time.
Figure 4-11 A block diagram of the AGC design example.
The superposition of the two cosine waves in the output equation results in the final gain (in dB) that is added to the power. We can also take the change in dB caused by the input modulation amplitude and phase, subtract the loop input and phase by converting to rectangular coordinates, and then convert back to polar coordinates. For example,

\[
\begin{align*}
\text{Input} & = 10 \text{ dB angle } = 0^\circ \\
\text{Loop response} & = \text{mag}(0.04 \times 10) = 0.4 \text{ dB angle } (-90^\circ + 0^\circ) = -90 \\
\text{Total response} & = (10 + j0) - (0 - j0.4) = 10 + j0.4 \quad \text{at an angle of } 2.3^\circ.
\end{align*}
\]

The magnitude changed by 0.008 dB and the phase of the modulating signal shifted by 2.3°.

Note that this assumes that the change in gain is within the DR of the AGC. If the gain change is outside of the AGC DR, then the magnitude of the loop response is 0.04 times only the portion of the AGC range that is being used.

To determine the resultant amplitude and phase for the general case:

\[
H(\omega) = [H]e^{jC} = [H] \cos C + j[H] \sin C
\]

Thus,

\[
(1 - H(\omega)) = 1 - ([H] \cos C - j[H] \sin C).
\]

The magnitude equals

\[
\text{mag}[1 - H(\omega)] = \sqrt{(1 + [H]^2 - 2[H] \cos C)}.
\]

The angle equals

\[
\tan^{-1}(-[H] \sin C/(1 - [H] \cos C)).
\]

4.10 Comparison of the PLL and AGC Using Feedback Analysis Techniques

Phase-locked loops are important elements in the design of synthesizers and carrier recovery circuits. They are used in almost all receiver designs and have become a basic building block design tool for the engineer. This section simplifies the analysis of PLL stability and makes a comparison between AGC and the PLL.
4.11 Basic PLL

The basic PLL standard block diagram is shown in Figure 4-12. The operation of the PLL takes the input frequency and multiplies this frequency by the voltage-controlled oscillator (VCO) output frequency. If the frequencies are the same, then a phase error is produced. The nature of the PLL forces the phase of the VCO to be in quadrature with the phase of the incoming signal. This produces the sine of the phase error:

\[
\cos(\omega t + a) \sin(\omega t + b) = \frac{1}{2}[\sin(a - b) + \sin(2\omega t + a + b)].
\]

![Diagram of PLL](image)

Figure 4-12 Basic diagram of a PLL.

Using a low-pass filter to eliminate the sum term produces

\[
\frac{1}{2}[\sin(a - b)];
\]

if \(a = b\), then

\[
\frac{1}{2}[\sin(0)] = 0.
\]

The zero voltage output sets the VCO to the correct steady-state value. If the voltage changes due to a change in input phase, the VCO changes until the phase error is approximately equal to zero. The low-pass filter removes higher frequency components and also helps to establish the loop gain. The PLL tracks a phase change over time, and since the change of phase per unit time is frequency, the PLL tracks frequency. Since it performs this task by converting the changing phase into a changing voltage that controls the VCO, the analysis is performed using phase as the parameter.
4.12 Control System Analysis

Phase-locked loops can be designed using basic control system theory since it is a feedback system (see Dorf, R. C. *Modern Control Systems*. New York: Addison-Wesley, 1988). The analysis is very closely related to the AGC study. In order to analyze the stability of the PLL, the basic diagram is redrawn (see Figure 4-13).

The block diagram for the PLL is almost identical to the AGC block diagram. The VCO contains an integrator and a gain constant, whereas the AGC amplifier only has a gain constant and the integrator is added as another block. The integrator included in the VCO produces a type 1 system, so for a step change in phase, the PLL will have a steady-state error of zero. For the AGC, the added integrator provides a steady-state error of zero for a step change (in dB) of input power. If a zero steady-state error for a step in frequency is desired, another integrator needs to be included in the PLL. However, this chapter will limit the analysis to a second-order type 1 system.

4.13 Detector

The phase detector or mixer in the PLL performs two operations (see Figure 4-12). First, the detector takes the input phase and subtracts the
feedback phase from the VCO to produce a phase error. Second, the detector converts the phase into voltage with a particular slope depending on the phase difference and the frequency of operation. This process for the AGC uses power (in dBm) for the input and subtracts the gain (in dB) to produce a power level error that is converted to voltage. The AGC detector’s operation point is set at the desired dBm output so the detector gain is the same around the operation point regardless of the input operating power. If the desired frequency is set for the PLL, then the same criteria apply. However, in many cases when a PLL is used, the desired operating frequency changes (such as the case for synthesizer design). Therefore the detector gain becomes a function of the input frequency or the input operating point. Care must be taken when selecting the gain constant for the VCO detector because it depends on the input frequency. There are approaches for linearizing the detector slope (Gardner, F. M. Phaselock Techniques. New York: John Wiley & Sons, 1979), but for this analysis the slope is chosen as a constant. If the frequency is constant, then the slope is easily chosen and the linearity is generally not a problem.

4.14 Loop Filter

The passive phase-lag network used for the loop stabilizing filter is identical for both the AGC and the PLL. The actual numerical values will be different depending on the loop requirements. The loop filter should follow the detector to prevent any high-frequency components from affecting the rest of the loop. The schematic consists of two resistors and a capacitor, and is shown in Figure 4-7 along with the transfer function. This circuit provides a pole and a zero to improve the stability of the loop. The filter is used to affect the attenuation and the roll-off point since the phase shift for a phase-lag network generally has a destabilizing effect.

4.15 Loop Gain Constant

Additional gain is added to the loop and is selected for the particular operating levels of the PLL. The gain constant is defined as K_c and is equal to $-R_5/R_6$ (see Figure 4-7). The gain constant is used in both the PLL and the AGC cases and are different depending on each of their proper operating points. An added threshold is not required in the PLL since the desired phase difference is always zero, regardless of the desired frequency of operation.
4.16 Integrator

The integrator for the PLL is inherent in the loop, whereas the AGC integrator is added to the loop. The reason for this is because the PLL operates using phase as the parameter and the VCO actually delivers frequency. Therefore the PLL forces the VCO to deliver phase that inherently adds an integrator because the integral of frequency is phase.

4.17 Conversion Gain Constant

The conversion in the AGC circuitry from volts to dBm produces a slope gain constant (dB/V) and is chosen considering the trade-off between stability and response time. The conversion in the PLL is a two-step process. First, the slope conversion constant converts from voltage to frequency, which is the constant for the VCO labeled K_v. Second, the inherent integration converts frequency into phase. The constant, K_v, for the PLL is not linear. This is also true for K_v in the AGC analysis because a linear approximation is used. A linearizer can be implemented for either the PLL or the AGC circuits.

4.18 Control Theory Analysis

The open-loop transfer function for the PLL is identical to the open-loop transfer function for the AGC except that the integrator is considered as $1/S$ instead of $1/(T_3S)$, as shown below.

Open-loop transfer function for AGC:

$$T_{sof} = \frac{K_sK_dK_vT_2}{T_3(T_1 + T_2)S\left(1 + \frac{1}{T_1 + T_2}\right)}$$

Open-loop transfer function for PLL:

$$T_{sof} = \frac{K_sK_dK_vT_2}{(T_1 + T_2)S\left(1 + \frac{1}{T_1 + T_2}\right)}$$
where
\[K_a = \text{AGC amplifier loop gain}, \]
\[K_o = \text{VCO gain}, \]
\[K_d = \text{detector loop gain}, \]
\[K_c = \text{gain constant}, \]
\[T_1 = R_1 \times C_1, \]
\[T_2 = R_2 \times C_1, \]
\[T_3 = R_3 \times C_3, \]
\[T_{\text{sol}} = \text{open-loop transfer function}, \]
\[S = j\omega \text{ for a lossless system}. \]

The closed-loop response is
\[T_{\text{clf}} = \frac{K \left(S + \frac{1}{T_2} \right)}{S^2 + \left(\frac{1}{T_1 + T_2} + K \right) S + \frac{K}{T_2}} \]

where
\[K = K_a K_d K_c (1/T_3) (T_2/(T_1 + T_2)) \text{ for the AGC}, \]
\[K = K_o K_d K_c (T_2/(T_1 + T_2)) \text{ for the PLL}, \]
\[T_{\text{clf}} = \text{closed-loop transfer function for both the AGC and PLL}. \]

From control system theory for the second-order system above,
\[2\zeta \omega_n = K + 1/(T_1 + T_2) \]
and
\[\omega_n^2 = K/T_2, \]

where
\[\omega_n = \text{natural frequency of the system}, \]
\[\zeta = \text{damping ratio}. \]

This analysis applies to the condition of the loop being already phase locked and not capturing the signal.

The loop gain for the PLL is selected considering several factors:

- Stability of the loop.
- Lock range and capture range.
Noise in the loop.

Tracking error.

The wider the bandwidth, the larger the lock and capture ranges, and also the more noise in the loop. The lock range is equal to the DC loop gain. The capture range increases with loop gain and is always less than the lock range. If the maximum frequency deviation or the maximum phase error desired is given, then the open-loop gain can be established. When designing a synthesizer, the crossover between the crystal reference and the VCO with respect to phase noise is chosen for best noise performance for the loop bandwidth. Once the frequency is chosen, the same stability analysis for the PLL can be performed as was done for the AGC circuit analysis.

The damping ratio is chosen so the system responds to a step function as fast as possible within a given percentage of overshoot. With a 5% overshoot, the minimum damping ratio is 0.707. This means the system is slightly underdamped. The damping ratio is chosen depending on the design criteria. If the overshoot is too high, the damping ratio should be changed. Once the damping ratio and the natural frequency are chosen for a system, the time constants can be determined mathematically. An example is shown as follows:

Determine loop bandwidth = 160 Hz
Choose $\omega_n = 1.0$ krad/sec $f_n = 160$ Hz
Choose $\zeta = 0.707$ PO $= 5\%$.

The poles and zeros for the root locus criteria are found by using $G(s)H(s)$. Note that $1/T_2$ determines the zero location for both the open-loop and closed-loop cases since $H(s) = 1$. The zero is placed at $-2\zeta\omega_n$ and the root locus plot is shown in Figure 4-9. This moves the root locus, the migration of the poles, away from the $j\omega$ axis to prevent oscillatory responses with a change in gain. It also places the poles on the tangent of the root locus circle at the given damping ratio so that the damping ratio is always greater as the gain varies. Due to the integrator, one pole migrates from the $j\omega$ axis along the σ axis as the loop gain constant K increases. As K approaches zero, the pole due to the integrator lies on the $j\omega$ axis. As the loop gain decreases, the integrator pole migrates closer to the $j\omega$ axis and becomes more oscillatory. However, a pole on the axis means that the system is overdamped ($\zeta > 1$) and will not oscillate. The only way this system can become unstable is with stray poles close to the origin. The loop gain K is chosen in this example so that the operating point lies on the root locus circle with the desired damping factor (see Figure 4-9).
AGC DESIGN AND PLL COMPARISON

For the example, choose T_2:

$$T_2 = \frac{1}{2\xi \omega_n} = \frac{1}{1.414k} = 707.2 \times 10^{-6}.$$

Using the root locus equations above:

$$K = T_2 \omega_n^2$$

$$2\xi \omega_n = T_2 \omega_n^2 + 1/(T_1 + T_2).$$

Solving for T_1:

$$T_1 = [1/(2\xi \omega_n - T_2 \omega_n^2)] - T_2$$

$$T_1 = [1/(1.414k - (707.2 \times 10^{-6})1000k)] - 707.2 \times 10^{-6} = 707.6 \times 10^{-6}.$$

For the AGC case, the constants are specified and T_3 is solved as shown:

$$K = K_aK_dK_c(1/T_3)(T_2/[T_1 + T_2])$$

$$T_3 = K_aK_dK_c(T_2/[T_1 + T_2])/K$$

$$K = T_2 \omega_n^2$$

$$T_3 = K_aK_dK_c(T_2/[T_1 + T_2])/(T_2 \omega_n^2).$$

For the PLL case, K_a and K_d are specified and we solve for K_c:

$$K = K_aK_dK_c(T_2/[T_1 + T_2])$$

$$K_a = 20K_d = 0.90$$

$$K_c = K/[K_aK_d(T_2/[T_1 + T_2])]$$

$$K = T_2 \omega_n^2$$

$$K_c = T_2 \omega_n^2/(K_aK_d(T_2/[T_1 + T_2])) = 707.2 \times 10^{-6}(1.0 \times 10^6) / [20(0.9)(707.2 \times 10^{-6})/(707.6 \times 10^{-6} + 707.2 \times 10^{-6})] = 78.6.$$

To complete the design, choose $C_1 = 0.01\mu F$:

$$T_1 = R_1C_1 \text{ therefore } R_1 = T_1/C_1 = 707.6 \times 10^{-6}/0.01\mu F = 70.76k\Omega$$

$$T_2 = R_2C_1 \text{ therefore } R_2 = T_2/C_1 = 707.2 \times 10^{-6}/0.01\mu F = 70.72k\Omega.$$

The resultant transfer functions are

$$^*T(\text{open loop}) = [707/S][S + 1.414k]/[S + 1.403k]$$

$$^*T(\text{closed loop}) = 707[S + 1.414k]/[S^2 + 2.11kS + 1000k].$$
4.19 Similarities Between the AGC and the PLL

The similarities between the PLL and the AGC are listed below. With very few exceptions the analysis is nearly identical.

- The PLL has a built-in integrator, part of the VCO when connected into the loop.
- AGC has an additional time constant due to the added integrator \(1/(R_3C)\).
- Same open-loop transfer function.
- Same closed-loop transfer function.
- They are basically the same process since they are both feedback systems.

4.20 Feedback Systems, Oscillations, and Stability

Feedback systems are valuable in reducing errors and maintaining constant values over changing parameters. Feedback helps the system evaluate the error from the ideal setting and allows the system to adjust values to minimize the error.

However, using feedback systems can cause the system to oscillate. If an oscillator is desired, then the design criteria are set to provide oscillations using feedback. If an oscillator is not desired, then the design criteria need to be implemented to avoid oscillations that are inherent in feedback systems. These types of systems use negative feedback, since positive feedback would cause the system to oscillate or continue to increase in value. Even with negative feedback systems, there is the possibility for system oscillation. In order for a system to oscillate, it has to follow the Barkhausen criteria, which is 0 dB gain and 360° phase shift. A negative feedback system, since it is negative, which by definition has a 180° phase shift, only requires a 180° phase shift for the system to oscillate: 180° + 180° = 360°. If the negative feedback system has a 180° phase shift and 0 dB gain (gain of 1), then it satisfies the Barkhausen criteria and will oscillate.

Bode diagrams are used to provide an indication of the stability of a system and how much margin a system has from becoming unstable (see Figure 4-14). This figure shows both the gain and phase as a function of frequency on a log scale. The gain margin is determined by the amount of
Instability & oscillation criteria for negative feedback systems, 0dB Gain, -180° phase shift

Gain Margin (-180° phase shift) = 0dB – (-10dB) = 10 dB
Phase Margin(0dB gain) = -100° – (-180°) = 80°

Figure 4-14 Bode plot for negative feedback systems.

Additional gain required at a -180° (negative feedback) phase shift to equal 0 dB gain, which is the oscillation criteria. Since the gain is at -10 dB for a -180° phase shift, the additional gain required to equal 0 dB is

Gain margin = 0 dB – (-10 dB) = 10 dB.

The phase margin is determined by the amount of additional phase shift required at 0 dB gain to equal a -180° (negative feedback) phase shift, which is the oscillation criteria. Since the phase shift is at -100° for a 0 dB gain, then the additional phase shift required to equal -180° is

Phase margin = -100° – (-180°) = 80°.

4.21 Summary

Automatic gain control is an important element in the design of all types of transceivers. AGC provides the necessary DR required for operation over varying distances and conditions. AGC can be analyzed using control system theory because it is a feedback system. The similarities between AGC and PLL are remarkable. They both can be analyzed using modern control system techniques. The steady-state error for both systems is zero for a step response. The step response for AGC is related to a power level
change and the step response for PLL is related to a phase change. If a zero steady-state error is required for a step in frequency, then another integrator needs to be added. Further study of PLL is required to answer various questions, such as capture and lock range, operation of the loop in a no-lock situation, and considerations concerning stray poles which may change the simple analysis. However, the idea of using these control system techniques for analyzing both AGC and PLL can be useful.

References

Problems

1. Name at least two RF devices that can be used for gain control.

2. What would be a reasonable value of the RC time constant, following the diode detector for the AGC, for a carrier frequency of 10 MHz and a desired modulating frequency of 1 MHz?

3. What does an integrator in the feedback loop do for the steady-state error?

4. Explain how the integrator achieves the steady-state error in problem 3.

5. If the input signal to a receiver changes suddenly from -70 dBm to -20 dBm, what is used to ensure a constant IF output of 0 dBm?

6. How does a nonlinear function affect the response of the AGC loop?

7. Why is a diode curve approximation much better that a piecewise linear approximation?
8. What is the main difference between an AGC and a PLL in the locked state?

9. What is the general reason that the AGC analysis is similar to the PLL analysis?

10. What state is the PLL assumed to be in the AGC/PLL analysis in this chapter?

11. What is the potential problem when using a feedback AGC?
Demodulation

The demodulation process takes the received signal and recovers the information that was sent. This is the key element in the transceiver process. Demodulation provides the tracking loops and detection processes, and requires careful design to ensure maximum likelihood of retrieving the data with the minimum bit error rate (BER) for digital systems. Digital modulation suppresses the carrier frequency so that it makes it difficult for standard detection such as phase-locked loops (PLLs) to lock onto a carrier.

5.1 Types of Demodulation

There are two ways to analyze the demodulation process of digitally modulated signals for phase-shift keying (PSK) depending on the type of modulation waveform used and the corresponding demodulation process used. One option is to use an asynchronous process that combines the phase-shift times (bits or chips) using a matched filter. This matched filter generally consists of a tapped delay line, with the tap spacing equal to the bit or chip duration, and provides a means to sum all of the phase shifts. This can be done either using analog tapped delay lines or digital filters. Most systems use digital means for implementing this type of demodulation scheme.

As the digital signal propagates through the matched filter, a correlation peak is generated at a particular time. This correlation peak can be
used as the retrieved data directly, or it can be used in a pulse position modulation (PPM) scheme where the time position of the correlation peak is decoded as data.

Another possibility is to analyze the demodulation of a PSK signal to coherently demodulate the incoming signal using several methods of implementation of various tracking loops. Since PSK systems suppress the carrier, a carrier recovery loop is used to reestablish the carrier in order to downconvert the signal to baseband. Also, if spread spectrum is used, the spread spectrum code must be stripped off in order to obtain the data stream, which is usually done with a sliding correlator. Once the data stream is produced, the data bits have to be sampled to recover the digital data that was sent. This is usually accomplished by using a bit synchronizer (a bit synch) to ensure that the system samples the data in the correct place (i.e., the center of the bit that was sent). This is the point of the eye pattern where the signal-to-noise ratio (SNR) is the greatest. The eye pattern is a measurement of a filtered code sequence that appears as an eye on an oscilloscope. Eye patterns will be addressed later in this book. In addition, error detection and correction techniques can be used to correct errors in the data stream. This chapter discusses several methods of demodulation in detail.

5.2 Pulsed Matched Filter

The matched filter process is used for asynchronous detection of a spread spectrum signal. It can be used for pulsed systems where the arrival of the pulse provides the information for the system. The time of arrival (TOA) is used in conjunction with a PPM scheme to decode the data that was sent. This is a very useful for systems that do not transmit continuous data and that do not want to use extra bits (overhead bits) for synchronizing the tracking loops in a coherent system. This type of matched filter is a very simple process that sums the pseudo-noise (PN) signals in such a way that the signal is enhanced, but it does not change the bandwidth. An example of this type of matched filter correlator in the analog domain is an acoustic charge transport (ACT) device. This device separates packets of sampled analog data with respect to delay, weights each packet, and then sums them together to receive a desired pulse. An analog version of a matched filter is shown if Figure 5-1.

This can be done digitally using finite impulse response (FIR) filters with the tap delay equal to the chip width and weights that are 1 or −1, depending on the code (see Figure 5-2). This matched filter correlator provides a means of producing a TOA with a high SNR by combining all of the pulses that were sent into one time frame.
As code propagates through the correlator the output is low until the code lines up with the correct weight values so that the phases are all the same.

Figure 5-1 Analog matched filter correlator.

Figure 5-2 PN code digital matched filter correlator for spread spectrum systems.
5.3 Digital Matched Filter Correlator

The matched filter correlator consists of a tapped delay line, with the delay for each of the taps equal to 1/chip rate. Each of the delay outputs are multiplied by a coefficient, usually \(\pm 1 \), depending on the code that was sent. The coefficients are the time reverse of the PN code values. For example,

Code values: 1, \(-1\), 1, 1

Coefficient values: 1, 1, \(-1\), 1

As the signal is processed through the matched filter, the weights will correspond at one code delay in time and the outputs of the resultants are all summed together to create a large signal (see Figure 5-2).

This example shows a code that is 4 bits long. The output of the digital summation is a pulse with an amplitude of 4 times the input pulse amplitude. This provides the SNR necessary to detect the signal with the bandwidth and noise power unchanged.

Often digital systems will use a quadrature downconversion to strip off the carrier and provide both I and Q data to the matched filter. The matched filter can either use a quadrature correlator or parallel matched filters to process the I and Q data.

In order to increase the process gain and jamming margin, cascaded PN code matched filters can be used. The more cascading of the match filters, the more process gain and jamming margin is achieved. An example of cascaded matched filters is shown in Figure 5-3. This simple example shows a four-stage matched filter, achieving an increase in signal of 4 times, then the output of this match filter is fed into another four-stage matched filter to provide a increase in signal level of 16 times (see Figure 5-3).

If the code is longer and random, then passing a sine wave through it would result in superposition of many segments of the sine wave, non-inverted and inverted. When these segments are summed together in the matched filter, the average output would be close to zero amplitude, or at least reduced. The same thing applies with different codes that are passed through the matched filter, since they switch the phase of the carrier at the wrong places and times. The closer the code is to the pseudo-random code, the higher the output correlation peak will be. Note, however, that regardless of the code used, the bandwidth has not changed. The bandwidth is dependent on the chip rate or pulse width (PW), which is still 2 times the chip rate (or 2/PW) for double-sided, null-to-null bandwidth (see Figure 5-4).

Often there is no carrier recovery since the process is asynchronous and the signal is demodulated. This method of detection is useful in pulsed
systems or time division multiple access (TDMA) systems, where the overhead required to synchronize the system may overwhelm the amount of data to be sent. In other words, the overhead bits and time to synchronize the tracking loops reduces the amount of information that can be sent for a given transmission pulse width.
Once the pulse is recovered, this produces a pulse in time that establishes the TOA for that pulse. This TOA can be applied to a PPM technique to demodulate the data that was sent.

5.4 Pulse Position Modulation

Pulse position modulation measures the TOA of the pulse received to determine where in time the pulse occurred. The data are encoded and decoded referenced to the time position of the pulse. The data bits represent a time slot on the time slot grid array. This is used with spread spectrum systems using PN codes, with matched filters to correlate PN codes. The integrated correlated signal produces a pulse, and the time position of the pulse provides data information.

The number of bits is dependent on the number of time slots; for example,

\[2^n \text{ bits} = \text{number of time slots.}\]

If there are 8 time slots, then there are 3 bits of information for each time slot:

\[2^3 \text{ bits} = 8 \text{ time slots.}\]

If absolute time is precisely known, then an absolute PPM demodulation process can be used. Therefore the TOA referenced to absolute time provides the information. The amount of information this TOA pulse provides depends on the PPM grid or the number of possible time divisions in which the TOA could occur. For example, if there are eight possibilities for the TOA to occur, then there are 3 bits of information produced on the TOA of one pulse (see Figure 5-5).

![Figure 5-5](image-url) Absolute pulse position modulation for data encoding.
The PPM grid is referenced to an absolute time mark and the entire PPM grid changes only with absolute time variations. Therefore the PPM grid is not dependent on the TOA pulses received except for the reference. Once the PPM structure is set up, it does not change. The dead time is allocated to ensure that the chips that make up the pulsed output have passed through the matched filter and do not interfere with other pulses. The dead times are the same lengths and do not vary in length between pulses.

Another scheme that is used when absolute time is not known is differential PPM. This method relies on the difference in time between one received TOA pulse and the next received TOA pulse. Therefore the first TOA pulse received contains no data but provides the reference for the following TOA pulse received. The time after a received TOA pulse is divided up into a PPM time slot grid, and when the following TOA pulse is received in that time slot grid, the time slot determines the data that were sent. For example, if the time on the grid is divided into eight time slots after receipt of a TOA pulse, then the next TOA pulse falls in one of the eight time slots and produces 3 bits of information (see Figure 5-6).

![Diagram of PPM grid and reference pulses](image)

Figure 5-6 Differential pulse position modulation for data encoding.

The third TOA pulse is mapped into the PPM grid, with the second TOA pulse taken as the reference, and so on, as shown in Figure 5-6. Dead time is also required for this PPM scheme. However, the dead time spacing between the PPM grids is dependent on the location of the received reference pulse. For example, if a TOA pulse is received in time slot 1 of the PPM grid, it is used as a reference for the next TOA pulse. The dead time starts from the time of reception of the reference TOA pulse. If the same TOA pulse is received in time slot 8 of the PPM grid and is used as the reference for the next pulse, the absolute time of the PPM grid for the next pulse will be delayed more than if time slot 1 was used as the reference. The average
would produce a higher throughput of data as compared with absolute PPM, since the dead time starts immediately following a received TOA pulse. For the absolute time PPM, the grid for all pulses is at the maximum and does not change with the data used.

A comparison between absolute and differential PPM with respect to missed pulses is shown in Figure 5-7. With absolute PPM, if a pulse is missed or appears in another time slot, then the errors will be for that time slot only. However, if differential PPM is used, then a TOA pulse that is missed or falls into the wrong time slot would not only cause an error for that particular time slot, but would cause an error for the next TOA pulse position because the time slot grid is established by the previous TOA pulse that was in error (see Figure 5-7). Therefore differential systems have a possibility of having twice as many errors as the absolute system. This is true for all types of differential systems and will be discussed in other applications.

5.5 Code Division Encoding and Decoding

Another type of demodulation scheme using the matched filter concept is to use code division encoding. Code division encoding contains a matched filter for every code sequence used. Each of the TOA pulses has a different code that is dependent on the data sent. For example, if there are eight different code sets and eight different matched filters, an output on code 1 decodes to data of 000, indicating that code 1 was sent. If there is an output of the fourth matched filter, then the data decodes to 011, which means that code 4 was sent. The major drawback to this type of demodulation is the amount of hardware required to build multiple matched filters.

5.6 Coherent versus Differential Digital Modulation and Demodulation

Coherent modulation and demodulation techniques maintain a constant state throughout the signal. In order to achieve this, it requires a very stable source and phase locking techniques. It is generally more costly and more complex.

On the other hand, differential modulation and demodulation techniques are less complex and less expensive. They only need to be stable between state changes (phase/amplitude) of adjacent symbols. Therefore stability is only critical for a short period of time. However, they experience more bit errors and require more SNR as compared to coherent systems. These techniques apply to all types of digital modulation.
Figure 5-7 Comparison between absolute and differential PPM.
A diagram showing the differences between coherent and differential systems with respect to the number of bit errors is shown in Figure 5-8. For coherent systems, if there is a bit error, it only affects the bit that was in error. For differential systems, there is the possibility of having twice as many errors. If the system receives one bit error, then the next bit could be in error, since it is dependent on the previous bit value and monitors the amount of change to the bit (see Figure 5-8).

Figure 5-8 Coherent versus differential systems with respect to bit errors.

As mentioned before, a major advantage of the differential system is the simplicity and cost of implementing a demodulation scheme. For example, a simple differential binary phase-shift keying (DBPSK) system can be demodulated by using a delay and multiply, as shown in Figure 5-9. The delay is equal to one bit time, and the multiplication and integration produces the bit that was sent. When the signal is in phase, then the delay and multiply

Figure 5-9 Differential demodulation using delay and multiply.
detection integrates to a large positive number; when the signal is out of phase, the signal integrates to a large negative number, thus retrieving the differentially encoded bit stream (see Figure 5-9).

5.6.1 Coherent Demodulation

Coherent demodulation is generally used for continuous systems or long-pulse systems that can afford the overhead required to enable the tracking loops in the system. This overhead includes the bits that need to be sent so that the tracking loops can start to track the incoming signal. These bits are wasted because the coherent data have not been demodulated if the tracking loops are not tracking the data yet. Therefore, if there is an output, it will contain a tremendous amount of errors. For short-pulse systems, this overhead can take up most of the signal. Every time a pulse is sent out, the tracking loops have to reacquire the signal. There are many ways that have been devised to demodulate the incoming signal and many ways to implement the tracking loops for each part of the system.

The demodulation process requires three basic functions in order to retrieve the data that was sent:

- Recover the carrier, since the digital modulation results in a suppressed carrier and the carrier is recovered in order to remove it from the incoming signal.
- Remove spreading spectrum coding, if using spread spectrum techniques. This is generally done using a despreading correlator or sliding correlator.
- Align and synchronize the sample point for sampling the data stream at the optimal SNR point, which requires lining up the bits with the sample time using a bit synchronizer.

5.7 Carrier Recovery

A required function in the coherent demodulation process is to recover the carrier of the incoming signal. The carrier recovery loop is needed since the carrier in a digitally phase modulated spread spectrum signal is suppressed. Feedback loops, tracking loops, and PLLs have problems with fast-changing phases which causes them to lose lock. In order to remove the carrier coherently, a carrier recovery tracking loop is used, then this recovered carrier is used to strip off or remove the signal’s carrier. A VCO is used in the carrier recovery loop for this demodulation process. Once the code and the carrier are removed, only the digital data remains. There are
different methods of performing this task. The most common methods of carrier recovery are

- Squaring loop
- Costas loop
- Modified Costas loop.

These loops are discussed in detail below. There are trade-offs for which type of carrier recovery loop should be used. A careful look at these parameters will provide the best type of carrier recovery loop for use in any given system design.

5.7.1 Squaring Loop

The squaring loop is used for demodulation of a binary phase-shift keying (BPSK) direct sequence waveform. The advantage of the squaring loop is mainly its simplicity of implementation. The squaring loop requires minimal hardware, which makes it cost efficient. A block diagram of a squaring loop is shown in Figure 5-10.

![Figure 5-10 Squaring loop carrier recovery.](image-url)
The squaring loop squares the incoming signal and filters the squared signal using a narrowband filter. The filter needs to be narrow enough for the spectrum of the input signal to be essentially constant. A filter matched to the waveform gives the best SNR and should be used in the intermediate frequency (IF) section before the squarer. This filter also reduces interference from other out-of-band signals and interference. The shape of the optimum filter should be a \(\sin \pi x / x \) impulse response in the time domain (square wave function in the frequency domain). The low-pass filters are used with a time period of \(T \) seconds, where \(T \) is one BPSK symbol interval.

An integrate-and-dump circuit operates as a good matched filter. A two-pole Butterworth filter approximates the ideal matched filter. Other filters, including root raised cosine filters, have also been used in communication systems.

Squaring a direct sequence BPSK signal eliminates the modulation, since the modulated signal is phase shifted either 0° or 180°. Squaring the signal doubles both the frequency and phase, resulting in the same phase shift of the signal as shown below:

\[
S = A \cos(\omega t + \phi), \text{ where } \phi = 0, 180
\]

\[
S^2 = A^2(\cos^2(\omega t + \phi)) = A^2/2(1 + \cos(2(\omega t + \phi)))
\]

\[
= A^2/2 + A^2/2 \cos(2\omega t + 2\phi) = A^2/2 + A^2/2 \cos(2\omega t + (0, 360)).
\]

Therefore

\[
S^2 = A^2/2 + A^2/2 \cos(2\omega t + 0).
\]

The output of the squaring loop is processed by a PLL and the output frequency is divided by two to achieve the fundamental frequency and the carrier is recovered. However, the divider creates an ambiguity, since it divides whatever the phase is of the actual carrier by two. For example, a change in one cycle (2\(\pi\) radians) results in a change of phase of \(\pi\). This means that if the frequency shifts one cycle, the phase is shifted 180° = 360°/2. Since the PLL does not recognize that there was a cycle slip, there is an ambiguity that needs to be accounted for. This creates a possible problem in the data because of this possible phase reversal. Another example: suppose the frequency locks up at \(\cos(2\omega t + (180)) \). When it is divided by two, the carrier frequency is \(\cos(\omega t + (90)) \), which means that the carrier is 90° out of phase of the locked carrier, and this phase needs to be adjusted out.

The output of the squaring loop is phase shifted to obtain a cosine wave, since the output of the PLL generates a sine wave, and is multiplied with the incoming signal to eliminate the carrier and obtain the data. If the
signal is 90° phase shifted with respect to the incoming signal, then the output would be zero:

$$(A \sin \omega t)(d(t) A \cos \omega t) = A/2d(t)(\sin 0 + \sin 2\omega t)$$

$$= A/2d(t) \sin 0 = 0, \text{ since } \sin 2\omega t \text{ is filtered.}$$

The phase shift is critical, may drift with temperature, and will need to be adjusted if different data rates are used. This is one of the main drawbacks to the squaring loop method of carrier recovery. There are other ways to perform carrier recovery that do not have this concern. The phase in question is the phase relationship between the input signal and the recovered carrier at the mixer where the carrier is stripped off.

Another disadvantage to the squaring loop approach to carrier recovery is that the filter for the squaring loop at the IF is good for only one data rate. If the data rate is changed, the filter needs to be changed. Some systems require that the data rate be variable, which makes the squaring loop less versatile than some other methods. A variable filter can be designed, but they are more complex than a fixed filter.

Squaring the signal gives rise to a DC term and a tone at twice the carrier frequency. A possible disadvantage to the squaring loop is that it needs to operate at twice the frequency. For most cases this is not a problem, however, higher frequencies can drive up the cost of hardware. Another configuration of the squaring loop is shown in Figure 5-11.

![Figure 5-11](image_url)

Figure 5-11 Another configuration of the squaring loop.
This configuration was developed for analog squaring loops, since it is generally easier to multiply frequencies than it is to divide frequencies in the analog domain. Since it is more difficult to divide frequencies in the analog domain, this configuration is another approach to achieve the same solution. Another advantage of this configuration is the VCO operates at a lower frequency, which is generally a cost savings. This configuration may not be an advantage in the digital domain, since it is easier to divide using simple digital techniques than it is to multiply.

If higher order PSK modulation schemes are used, then higher order detection schemes need to be implemented. For example, if a QPSK modulation waveform is used, then the demodulation process needs to square the signal twice, or raise the signal to the fourth power. Sometimes this circuit is referred to as a times-4 device, which is really a misnomer. The signal is not multiplied by 4, but the frequency is 4 times higher. QPSK, since there are four phase states at 0°, 90°, 180°, and -90°, requires a four power, or squaring the waveform twice, to eliminate the phase shift. The following example shows squaring the input two times with the amplitudes and DC terms ignored for simplicity:

\[
\begin{align*}
 \cos(\omega t + (0, 90, -90, 180)))^2 &= \cos(2\omega t + (0, 180, -180, 360)) \\
 \cos(2\omega t + (0, 180, -180, 360)))^2 &= \cos(4\omega t + (0, 360, -360, 360)) \\
 &= \cos(4\omega t + 0).
\end{align*}
\]

The frequency is recovered by dividing the resultant frequency by four.

The description of the squaring loop can be applied for all the higher order loops, keeping in mind that the functions need to be modified for the higher order operations. The difference is how many times the signal needs to be squared. For an n-phase signal, $2^n = n$, where a is the number of times the signal needs to be squared. For example, an 8PSK signal would be $2^3 = 8$. Therefore the 8PSK signal would need to be squared 3 times to eliminate the phase ambiguity. The higher order PSK demodulation processes can become complex and expensive due to the higher frequency components that need to be handled. Also, there are losses in the signal amplitude every time it is squared. These losses are called squaring losses, and they degrade the ability to detect the signal.

Once the carrier is recovered, it is used to strip off the phase modulated carrier in order to retrieve the digital modulated signal. This is accomplished in the demodulator, or mixer, and then integrated over a bit or chip time to achieve the digital signal. A large positive number from the multiply and integrate is a digital “1” and a large negative number from the multiply and integrate is a digital “0,” thus the digital signal is retrieved (see Figure 5-12).
5.7.2 Costas Loop

The Costas loop is generally the preferred method of recovering the carrier frequency. It is used extensively in communication systems and does not require phase adjustment. It is basically a quadrature demodulation PLL and contains the complete process which eliminates the carrier frequency. This does not have the squaring loop phase ambiguity; however, it does have an ambiguity on which quadrature path contains the data, and in some systems the quadrature outputs are combined to mitigate this ambiguity. Another way to eliminate this ambiguity is to use a modified version of the Costas loop, known as a hard-limited Costas loop, which will be discussed shortly.

The standard Costas loop does not use a squaring loop, so the double-frequency signal is not a part of the process. Therefore the higher frequencies are not produced. Instead, the Costas loop uses basically two PLLs, one of which is phase shifted in quadrature, producing quadrature I and Q channels, as shown in Figure 5-13.

The outputs of each PLL are multiplied and low-pass filtered to eliminate the sum terms so that the loop tracks \(\sin(2P) \), where \(P \) is the phase error. The low-pass filters are matched filters for the symbol or bit rate. To eliminate the need for an analog multiplier, a hard-limited Costas loop can be utilized. The matched filtering is done at baseband and the output is used to generate the error.
As p approaches zero the loop is locked. Note that the input could have been a sin instead of a cos and the bottom leg would have contained $f(t)$.

Figure 5-13 Costas loop used for carrier recovery.

The phase shift, as in the squaring loop, is not critical, since the feedback forces the phase to be correct. Since the feedback is forcing the error to be zero, the error channel is driven to zero, but either channel can be the data channel. A modified Costas loop is a method to force the data to a known channel.

The matched filters in the Costas loop are good for only one data rate. If the data rate is changed, then the matched filters need to be changed. However, changing filters at baseband is much easier and more cost effective than changing IF filters, as in the squaring loop. Note that the squaring loop baseband matched filters also need to be changed along with the IF filter.

5.7.3 Modified Costas Loop and AFC Addition

Since the Costas loop is only good for a narrow bandwidth, an automatic frequency control (AFC) can be included to extend the pull-in range, which increases the bandwidth of the Costas loop. There are other modifications of the standard Costas loop that can be done to improve the performance and versatility of this process. A hard-limited Costas loop or a data-aided loop can further improve the carrier recovery process. A hard-limited Costas loop has a hard limiter in one of the channels, which estimates the data pulse stream. By hard limiting one of the channels, that channel automatically becomes the data channel, since it produces a sign change, and the other channel becomes the error channel, which is driven to zero. This way the
multiplier—which is generally a drawback to Costas loops, since it is hard to build a multiplier in the analog domain—can simply invert or noninvert the signal (see Figure 5-14).

This can be done by selecting either a noninverting amplifier or an inverting amplifier according to the data estimate. This becomes much easier to implement in hardware. This type of loop is commonly called a polarity loop. This strips the modulation off and leaves the phase error for the PLL. A data-aided loop uses the data estimation similar to the hard-limited Costas loop to improve the performance of the standard Costas loop. There are many enhancements and variations of the standard Costas loop, but a basic understanding of its operation provides the user with the ability to design a carrier recovery loop for a typical system, including modifications where improvement is desired.

5.8 Despreading Correlator

A despreading correlator is used to remove the spread spectrum code on a spread spectrum system. Despreading the signal decreases the required bandwidth, which decreases the noise power, thus increasing the SNR of the received signal. A sliding correlator incorporates a method of stripping off the PN code to retrieve the data information. This is generally the first stage in the detection process, since the bandwidth is large due to spreading. The carrier frequency needs to be at least two times the bandwidth. This prevents the main lobe and one other lobe from folding over into the signal, resulting in aliasing. Since the code can be long before it repeats, some codes do not repeat for 2 years, an initial alignment needs to be performed.
This requires additional bits to be sent that are not related to the data being sent. These bits are called the preamble, which consists of overhead bits that will change the data rate by a certain percentage of the data messages sent. For continuous systems, these overhead bits are a very small percentage of the message. For pulsed-type systems or TDMA systems, these bits can be a large percentage of the message depending on the length of the pulse. The code alignment process can be accomplished by using the following techniques:

- Generating a short code for acquisition only.
- Using highly reliable clocks available to both the transmitter and receiver, such as rubidium, cesium, or global positioning system (GPS).
- Using an auxiliary subsystem that distributes system time to both parties.

In many system architectures, all of these techniques are used to simplify and accelerate the code alignment process. Once the code time is known fairly accurately, two steps are used to demodulate the PN code.

The first step is to determine if the code is lined up; the second step is to lock the code into position. The first step is achieved by switching a noncorrelated code into the loop and then into a sample-and-hold function to measure the correlation level (noise) output. Then the desired code is switched into the loop and into the sample-and-hold function to measure the correlation level (signal) output. The difference in these levels is determined and the results are then applied to a threshold detector in case the search needs to be continued. If the threshold level is achieved, the second step is activated. This prevents false locking of the sidelobes. Note that a false lock generally occurs at half of the bit rate.

The second step is to maintain lock (also fine tuning) by using a code lock tracking loop. This assumes that the codes are within 1/2 bit time. One type of code tracking loop is called an early-late gate. An early-late gate switches a VCO between an early code (1/2 bit time early) and a late code (1/2 bit time later). The correlation or multiplication of the early code and the input code, and the late code and the input code produces points on the autocorrelation peak, as shown in Figure 5-15.

This shows the code loop locked when the values of the autocorrelation function are equal. The nondelayed code is used for demodulation of the spread spectrum waveform. The peak of the autocorrelation function occurs when the nondelayed, aligned code is multiplied with the incoming signal and summed (see Figure 5-15). These codes are mixed with the incoming signal, filtered, and detected (square-law envelope detected), and the output
sign is changed at the dither rate. For example, the early code detector output is multiplied by -1 and the late code detector output is multiplied by $+1$ and the final output is filtered by the loop filter, which takes the average of the two levels. This provides the error and controls the VCO to line up the codes so that the error is zero, which means the VCO is switching symmetrically around the correlation peak. Therefore the early-late gate uses feedback to keep the code aligned. Sign is important in the design and hardware applications since it drives the direction of the oscillator. For example, if a negative number increases the frequency of the VCO or a positive number increases the VCO, this needs to be taken into account so the VCO is driven in the right direction given the sign of the error signal.

A delay-locked loop (DLL) is another form of a lock loop code. DLLs accomplish the same thing as early-late gates. They align the code in order to strip off the PN code using autocorrelation techniques. The main difference in the DLL compared to the early-late gate is that the DLL uses a nondelayed code and a code that is delayed by one chip. The DLL splits the incoming signal and mixes with the VCO output that is either shifted a bit or not. The main goal is to obtain the maximum correlated signal on the nondelayed code and the minimum correlated signal on the 1 chip delayed code. The DLL generally tracks more accurately (approximately 1 dB), but it is more complex to implement. Other forms of correlation that are used in communication systems include tau-dither loops (TDLs) and narrow

Figure 5-15 Sliding correlator early-late gate autocorrelation function.
correlators. Narrow correlators are used in GPS systems for higher accuracy and will be discussed in later chapters.

A basic code recovery loop is shown in the Figure 5-16. The incoming code is a composite of both the data and the high-speed PN code from the transmitter to produce the spread spectrum signal. The same high-speed PN code resides in the receiver. The sliding correlator searches for the correlation peak by speeding up or slowing down the code clock, which aligns the codes. When these codes are aligned, multiplication is performed on each of the code bits and the integration of all the multiplication products results in a large negative number when the code is inverted, which represents a “0” data value in this example; the same process results in a large positive number when the code is not inverted, which represents a “1” data value. Therefore if the codes are aligned properly, the output is the retrieved digital data signal (see Figure 5-16). The autocorrelator, or early-late gate in this example, compares the incoming digital waveform and correlates this digital signal with the internal PN code residing in the receiver. Using an early code and a late code or early-late gate, and comparing these results, provides the feedback to adjust the speed of the PN receiver clock in order to maintain code lock.

5.9 Symbol Synchronizer

Once the carrier is eliminated, the raw data remain. However, due to noise and intersymbol interference (ISI) distorting the data stream, a symbol synchronizer is needed to determine what bit was sent. This device
aligns the sample clock with the data stream so that it samples in the center of each bit in the data stream. An early-late gate can be used, which is similar to the early-late gate used in the code demodulation process. The code demodulation process requires integration over the code length or repetition to generate the autocorrelation function. With the bit synchronizer, the integration process is over a symbol or bit if coding is not used. The early and late gate streams in the bit synchronizer are a clock of ones and zeros since there is no code reference and the data are unknown. Therefore the incoming data stream is multiplied by the bit clock, set at the bit rate, with the transitions early or later than the data transitions, as shown in Figure 5-17.

This example shows the early gates and late gates are off from the aligned signal by $\frac{1}{4}$ symbol or bit, which is a narrower correlator as compared to the standard $\frac{1}{2}$. This provides more accuracy for the sample point. The integrated outputs are shown along with the aligned integration for

![Figure 5-17 Bit synchronizer using the early-late gate narrow correlator technique.](image)
comparison. When the integrated outputs are equal in peak amplitude, as shown in the example, then the bit synchronizer is aligned with the bit. Therefore the point between the early gate and late gate, which is the center of the aligned pulse, is the optimal point to sample and recover the data. This point provides the best SNR of the received data, which is the center of the eye pattern (see Figure 5-18). Once these data are sampled at the optimal place, a decision is made to determine whether a “1” or a “0” was sent. This bit stream of measured data is decoded to produce the desired data.

![Eye Pattern on the Oscilloscope](image)

Figure 5-18 Eye pattern as seen on an oscilloscope.

5.10 The Eye Pattern

The eye pattern describes the received digital data stream when observed on an oscilloscope. Due to the bandwidth limitations of the receiver, the received bit stream is filtered and the transitions are smoothed. Since the data stream is pseudo-random, the oscilloscope shows both positive and negative transitions, thus forming a waveform that resembles an eye (see Figure 5-18).

The four possible transitions at the corner of the eye are low to high, high to low, high to high, and low to low. Observation of the eye pattern can
Figure 5.19 Eye pattern with distortion.
provide a means of determining the performance of a receiver. The noise on
the eye pattern and the closing of the eye can indicate that the receiver’s
performance needs to be improved or that the signal from the transmitter
needs to be increased. The eye pattern starts to close with the amount of
distortion and noise on the signal (see Figure 5-18). The bit synchronizer
samples the eye pattern at the center of the eye where the largest amplitude
and the highest SNR occur. As the noise increases, it becomes much more
difficult to determine the bit value without bit errors (see Figure 5-19).

5.11 Digital Processor

Once the digital data stream has been sampled and it is determined
that a “0” or a “1” was sent, the digital data stream is decoded into the data
message. The digital processor is generally responsible for this task and
also the task of controlling the processes in the receiver as well as demodu-
lation of the received signal. In many systems today, the digital processor,
in conjunction with specialized digital signal processing (DSP) integrated
circuits that are available, is playing more of a key role in the demodula-
tion process. This includes implementation of the various tracking loops,
bit synchronizing, carrier recovery, and decoding of the data, as mentioned
above. The digital processor ensures that all of the functions occur at the
necessary times by providing a control and scheduling capability for the
receiver processes.

5.12 Intersymbol Interference

Intersymbol interference is the amount of interference due to dispersion
of the pulses that interfere with the other pulses in the stream. Dispersion
occurs when there are nonlinear phase responses to different frequencies
or a nonconstant group delay, which is the derivative of the phase (see
Figure 5-20).

![Figure 5-20: ISI as a result of dispersion of the pulse waveform.](image-url)
Since pulses are made up of multiple frequencies according to the Fourier series expansion of the waveform, these frequencies need to have the same delay through the system in order to preserve the pulse waveform. Therefore, if the system has a constant group delay, or the same delay for all frequencies, then the pulse is preserved. If it is a nonconstant group delay that causes different delays for different frequencies, then these frequencies are added together to form a pulse waveform where the pulse is dispersed or spread out. This causes distortion to adjacent pulses and thus creates ISI. To obtain a value of the amount of ISI, the eye pattern, as mentioned above, can be used. The ISI is determined by the following:

\[
\text{ISI} = 20 \log\left(\frac{V_h}{V_l}\right),
\]

where

- \(V_h\) = highest peak voltage when measured at the center of the eye of the eye pattern,
- \(V_l\) = lowest peak voltage when measured at the center of the eye of the eye pattern.

The measured amount of ISI in a receiver determines the amount of degradation in the ability to detect the desired signals and leads to increased BERs in the system. This can be included in the implementation losses of the system, described in Chapter 1. Sometimes this ISI is specified in the link budget as a separate entry.

5.13 Scrambler/Descrambler

Scramblers and descramblers are used to prevent a long stream of either “1”s or “0”s in the data or code. The scrambler uses an additional PN code selected with short runs of “1”s and “0”s which is combined with the code or data sequence. This is accomplished by performing a modulo-2 addition to the digital signal in the transmitter. This code is demodulated by the descrambler in the receiver with a matched filter or sliding correlator. The code used for the scrambler/descrambler contains no data and adds cost and complexity. Using this technique prevents drifts of VCOs due to large DC values caused by these long periods when the code does not change state.

5.14 Phase-Shift Detection

Spread spectrum systems are sometimes used for covert systems. This is known as electronic countermeasures (ECM) and provides decreased
vulnerability to detection. Receivers that are designed to detect these types of signals are called electronic counter-countermeasure (ECCM) receivers. One of the methods to detect a BPSK waveform, as mentioned before, is to use a squaring, doubler, or $\times 2$ (doubling the frequency) to eliminate the phase shift as follows:

$$[A \cos(\omega t + 0, 180)]^2 = A^2/2 \cos(2\omega t + 0, 360) = A^2/2 \cos(2\omega t).$$

Note that $2 \times 0^\circ$ is 0° and $2 \times 180^\circ$ is 360°, which is equal to 0°. This is the basis for squaring, to eliminate the phase shift modulation so that the resultant signal is a continuous wave (CW) spectral line instead of a sinc function with a suppressed carrier. The CW frequency is then easily detected, since this squaring process despreads the wideband signal.

The end result is a spectral line at twice the carrier frequency. This basic principle for detecting a BPSK data stream allows the ECCM receiver to obtain the frequency of the signal being sent by dividing the output frequency by two for BPSK. If BPSK is used, the null-to-null bandwidth, which is equal to twice the chip rate, allows the ECCM receiver to calculate the chip rate of the BPSK signal. The sidelobes are monitored to ensure that they are half of the width of the main lobe, which equals the chip rate. If they are not, then this provides additional information to the ECCM receiver that the signal is not BPSK and might be another form of modulation.

Quadrature phase-shift keying (QPSK) and offset QPSK (OQPSK) are detected by what is known as a times-4 ($\times 4$) detector, which quadruples the input signal to eliminate the phase ambiguities. OQPSK has all the same absolute phase states but is not allowed to switch more than 90°, which eliminates the 180° phase shifts. However, the criteria depend on only the absolute phase states and how they are eliminated. The following shows the results of squaring the signal twice. The first squaring function produces

$$[A \cos(\omega t + 0, 90, 180, -90)]^2 = A^2/2 \cos(2\omega t + 0, 180, 360, -180)$$

$$= A^2/2 \cos(2\omega t + 0, 180) \text{ plus DC offset filtered out.}$$

Squaring again produces

$$[A^2/2 \cos(2\omega t + 0, 180)]^2 = A^4/8 \cos(4\omega t + 0, 360) \text{ plus a DC term filtered out}$$

$$= A^4/8 \cos(4\omega t).$$
Note: Since the possible phase states are 0, 180, 90, −90, squaring them would only give $2 \times 0 = 0$, $2 \times 180 = 360 = 0$, $2 \times 90 = 180$, $2 \times −90 = −180 = 180$. Therefore the problem has been reduced to simple phase shifts of a BPSK level. One more squaring will result in the same as described in the BPSK example above, which eliminates the phase shift. Therefore quadrupling or squaring the signal twice eliminates the phase shift for a quadrature phase-shifted signal.

The resultant signal gives a spectral line at four times the carrier frequency. This is the basic principle behind the ECCM receiver in detecting a QPSK or OQPSK data stream and allows the ECCM receiver to know the frequency of the signal being sent by dividing the output frequency by four for both QPSK and OQPSK waveforms.

For MSK, there is a sinusoidal modulating frequency proportional to the chip rate in addition to the carrier frequency along with the phase transitions. One way to generate classic MSK is to use two BPSK in an OQPSK-type system and sinusoidally modulate the quadrature channels at a frequency proportional to the bit rate before summation. In other words, the phase transitions are smoothed out by sinusoidal weighting. By positioning this into a times-4 detector as above, the resultant is

$$[A \cos(\omega t + 0, 90, 180, −90)(B \cos \frac{\pi t}{2}T)]^4 = [AB/2(\cos(\omega \pm \pi/2T)t$$

$$+ 0, 90, 180, −90)]^4.$$

The phase ambiguities will be eliminated because the signal is quadrupled so that the phase is multiplied by 4. This results in 0°, so these terms are not carried out.

Squaring the equation first produces the sums and differences of the frequencies. Assuming that the carrier frequency is much larger than the modulating frequency, only the sum terms are considered and the modulating terms are filtered out. For simplicity, the amplitude coefficients are left out. Therefore squaring the above with the conditions stated results in

$$\cos(2\omega \pm \pi/T)t + \cos(2\omega)t.$$

Squaring the above equation with the same assumptions result in quadrupling MSK:

$$\cos4\omega t + \cos(4\omega \pm 2\pi/T)t + \cos((4\omega \pm \pi/T)t.$$

There will be spectral lines at 4 times the carrier, 4 times the carrier ± 4 times the modulating frequency, and 4 times the carrier ± 2 times the modulating frequency. Therefore, by quadrupling the MSK signal, the carrier
can be detected. Careful detection can also produce the chip rate features since the modulating frequency is proportional to the chip rate.

5.15 Shannon's Limit

In 1948, a man by the name of C. E. Shannon developed a theory of how much information could be theoretically sent over a channel. The channel could be any medium used to send information, such as wire, optic cable, or free-space. The Shannon limit for information capacity is

\[C = B \log_2(1 + \text{SNR}), \]

where

- \(C \) = information capacity of a channel (in bps),
- \(B \) = bandwidth (in Hz),
- \(\text{SNR} \) = signal-to-noise ratio*.

*Note: This value is the actual SNR, which is unitless and is not converted to dB. Therefore, if the SNR is given in dB, the value needs to be converted back to the actual SNR.

Since it is more common to use logarithms in base 10 instead of base 2, a conversion is required as follows:

\[\log_2 X = \frac{\log_{10} X}{\log_{10} 2} = 3.32 \log_{10} X. \]

Therefore Shannon’s limit becomes

\[C = 3.32B \log_{10}(1 + \text{SNR}). \]

Many different coding schemes can send several bits of information for every symbol sent. For example, QPSK sends two bits of information per symbol of transmission. Shannon’s limit provides the absolute maximum information that can be sent no matter how many bits can be put into a symbol.

5.16 Summary

The demodulation process is an important aspect in the design of the transceiver. Proper design of the demodulation section can enhance the sensitivity and performance of data detection. Two types of demodulation can be used to despread and recover the data. The matched filter approach
simply delays and correlates each delay segment of the signal to produce the demodulated output. This process includes the use of PPM to encode and decode the actual data. Another demodulation process uses a coherent sliding correlator to despread the data. This process requires alignment of the codes in the receiver, which is generally accomplished by a short acquisition code. Tracking loops, such as the early/late gate, align the code for the dispreading process. Carrier recovery loops, such as the squaring loop, Costas loop, and modified Costas loop, provide a means for the demodulator to strip off the carrier. A symbol synchronizer is required to sample the data at the proper time in the eye pattern in order to minimize the effects of ISI. Finally, receivers designed for intercepting transmissions of other transmitters use various means of detection depending on the type of phase modulation utilized.

References

Problems

1. Given a code of 1010011, what would the weights of the pulse matched filter need to be assuming \(\times 1 \) is the weight for the first stage of the matched filter and \(\times 7 \) is the weight for the last stage of the matched filter?

2. Given a BPSK signal, show how a squaring loop eliminates the phase ambiguity.

3. What is the null-to-null bandwidth of a spread spectrum signal with a chipping rate of 50 Mcps?

4. How does the bandwidth change in (a) the pulsed matched filter and (b) the sliding correlator matched filter?

5. Explain what is meant by intersymbol interference.
6. What is an eye pattern?

7. Where on the eye pattern is the best place for sampling the signal for best performance? Where is the worst place?

8. Using the squaring loop idea for BPSK detection, what would be needed in (a) an 8PSK detector, (b) a 16PSK detector?

9. What would be the minimum possible phase shifts of each of the waveforms in problem 8?

10. Since MSK can be considered as a frequency-shifted signal, what would be another way of detection of MSK?

11. What is the advantage of MSK in reference to sidelobes?

12. What are the two basic ways to demodulate a PSK digital waveform?

13. What is a method used to maintain lock using a sliding correlator?

14. What two ways are used to eliminate the carrier from the PSK digital waveform?

15. What are the two parameters that establish Shannon’s limit?
Basic Probability and Pulse Theory

In order to achieve a better understanding of digital communications, some basic principles of probability theory need to be discussed. This chapter provides an overview of theory necessary for the design of digital communications and spread spectrum systems. Probability is used in the link budget calculations in regards to the error and required signal-to-noise (SNR) ratio, as well as to determine whether a transceiver is going to work and at what distances. This is specified for digital communications systems as the required E_b/N_0.

The central question concerning probability is whether something is going to occur, whether it is an error in the system, or the probability that multipath will prevent the signal from arriving at the receiver. The probability that an event occurs is described by the probability density function (PDF) and is defined as

$$f_x(x).$$

Probability can be expressed as a percentage, for example, a 10% chance that a value is present or that an event has occurred, or the probability of occurrence (see Figure 6-1). The integral of the PDF is equal to $F_x(x)$ and is referred to as the cumulative distribution function (CDF). This integral of the PDF over $\pm \infty$ equals 1, which represents 100%:

$$F_x = \int_{-\infty}^{+\infty} f_x(x) dx = 1 = 100\%$$
For example, if there is a 10% chance of getting it right, by default there is a 90% chance of getting it wrong. The CDF is shown in Figure 6-2.

Often the PDF is mislabeled as the CDF. For example, if something has a Gaussian distribution, the curve that comes to mind is the PDF, as shown in Figure 6-1. This is not the common distribution function.

Another term used in probability theory is called the expected value $E[X]$. The expected value is the best guess as to what the value will be. To obtain the expected value, the signal values are multiplied by the percentage or the PDF and then summed or integrated as shown:

$$E[x] = \int xf(x)dx.$$
Using a discrete example, suppose the density function is symmetrical. To plug in some numbers:

<table>
<thead>
<tr>
<th>x</th>
<th>$f_x(x)$</th>
<th>$x f_x(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1(10%)</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2(20%)</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.4(40%)</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>0.2(20%)</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>0.1(10%)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

$$\sum x f_x(x) = E[X] = 3.0.$$
The expected value is equal to the mean value or mean (m_x). Therefore

$$m_x = E[x] = \int x f_x(x) dx = 3.0.$$

Another important variable in probability theory is the variance. In order to define the variance, the expected value of the variable squared needs to be calculated. The expected value of x^2 is solved by a similar method shown below:

$$E[x^2] = \int x^2 f_x(x) dx.$$

Using the same discrete example:

<table>
<thead>
<tr>
<th>x^2</th>
<th>$f_x(x)$</th>
<th>$x^2 f_x(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>0.4</td>
<td>3.6</td>
</tr>
<tr>
<td>16</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>25</td>
<td>0.1</td>
<td>2.5</td>
</tr>
</tbody>
</table>

$$\sum x^2 f_x(x) = E[x^2] = 10.2.$$
The variance (Var) is a measure of how far the signal varies from the expected value or the mean. The variance is equal to

$$E[x^2] - m_x^2 = 10.2 - 9 = 1.2.$$
If the mean is zero, then the variance is equal to

\[E[x^2] = 10.2. \]

In communications, the analysis is often performed with a mean equal to zero, since this is a common occurrence in many systems:

\[\text{Var} = \sigma_x^2 = E[(x - m_x)^2] = \int (x - m_x)^2 f_x(x) \, dx. \]

The variance is the expected value of the difference between the mean and the variable squared. For the example above:

\[
\begin{array}{ccc}
(x - m_x)^2 & f_x(x) & (x - m_x)^2 f_x(x) \\
4 & 0.1 & 0.4 \\
1 & 0.2 & 0.2 \\
0 & 0.4 & 0 \\
1 & 0.2 & 0.2 \\
4 & 0.1 & 0.4 \\
\end{array}
\]

\[\sum (x - m_x)^2 f_x(x) = 1.2. \]

The standard deviation also relates to the variation of the signal. The standard deviation is defined as

\[\text{StdDev} = \sqrt{\text{Var}} = \sqrt{1.2} = 1.095. \]

The cumulative distribution function, or distribution function, accumulates or adds up the percentages between \(x_1 \) and \(x_2 \). It is defined as

\[F_x(x) = \int_{x_1}^{x_2} f_x(x) \, dx \]

For example, in the discrete case above, summing from \(x_1 = 1 \) to \(x_2 = 3 \):

\[F_x(x) = 0.1 + 0.2 + 0.4 = 0.7 = 70\%. \]

The cumulative distribution function for a Gaussian process integrating over the entire range from \(-\infty\) to \(+\infty\) is graphically shown in Figure 6-2. Note that the final value of the cumulative distribution function is equal to unity. The distribution function is useful when the limits of integration...
are something other than $-\infty$ to $+\infty$. Determining the total probability of a range of signals can help to identify and analyze the strengths of a system. For example, often an analysis requires knowledge of what the total probability would be over 2σ, where σ is the standard deviation of the system. This requires calculation of the cumulative distribution function, which will be discussed later. The power spectral density (PSD) is useful in communications systems to analyze the frequency domain of a signal. The PSD for a random binary phase-shift keying (BPSK) signal is

$$S_x(f) = A^2 T \text{sinc}^2(f T).$$

Therefore the spectrum will be a sinc2 function, which is a $(\sin x / x)^2$ function in the frequency domain.

The mean-square value $E[X^2(t)]$ is equal to the total area under the graph of the PSD:

$$E[x^2(t)] = \int S_x(f) \, df$$

If the mean is equal to zero, then this becomes the variance of the BPSK signal. The standard deviation is the square root of the variance.

Probability theory plays an important role in communications and further study should be done to enhance the ability to analyze digital transmissions. However, this simple presentation will greatly help in providing the understanding required to begin analyzing digital communications.

6.1 The Gaussian Process

The Gaussian process or distribution is probably the most common distribution in analyzing digital communications. There are many other types of distributions, such as the uniform distribution, which is used for equal probability situations (e.g., the phase of a multipath signal) and the Rayleigh distribution, which is used to characterize the amplitude variations of the multipath. The Gaussian distribution, however, is used most frequently. It is called the normal distribution or bell-shaped distribution because of its common use and because it produces a PDF bell-shaped curve. Most often noise is characterized using a Gaussian distribution for transceiver performance and SNR evaluations. The PDF for a Gaussian process is defined as follows:

$$f_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}},$$
where
\[\sigma = \text{standard deviation}, \]
\[m_e = \text{mean}. \]

This establishes a curve called the distribution function. This is really the density function, a slight misnomer. Note that it is not the cumulative distribution function as mentioned before. The cumulative distribution is defined as

\[F_x(x) = \frac{1}{2} \left(1 + \text{erf} \frac{x}{\sigma \sqrt{2}} \right), \]

where
\[\text{erf} = \text{error function}, \]
\[\sigma = \text{standard deviation}. \]

The mean is assumed to be zero.

The \(\text{erf} \) value can be calculated or a lookup table can be used with an approximation if \(x \) is large. The cumulative distribution function is used to calculate the percentage that the error is within a given range, such as \(1\sigma \) or \(2\sigma \).

For example, what is the probability that \(x \) is between \(\pm 2\sigma \) or a \(2\sigma \) variation or 2 times the standard deviation. The cumulative distribution is used, and substituting \(-2\sigma \) for \(x \) in the above equation yields

\[F_x(x) = \frac{1}{2} \left(1 + \text{erf} \frac{-2}{\sqrt{2}} \right) = \frac{1}{2} \left(1 + \text{erf} (-\sqrt{2}) \right) \]

Note that \(\text{erf}(-x) = -\text{erf}(x) \). Therefore \(\text{erf}(-2\sqrt{2}) = -\text{erf}(1.414) = -0.954 \) from tables [see Appendix 2, in Communication Systems (Haykin)].

Finishing the calculations:

\[F_x(x) = \frac{1}{2} \left(1 + (-0.954) \right) = 0.023. \]

This represents the probability of the function at \(-2\sigma \) or less, as shown in Figure 6-3. Therefore, assuming Gaussian distribution with zero mean, the probability of the function being a \(+2\sigma \) or greater is the same.

The probability of the signal being outside \(\pm 2\sigma \) is 0.0456. Therefore, the probability of \(x \) being inside these limits is \(1 - 0.0456 = 0.954 \), or 95.4%. This is the same result as simply taking the \(\text{erf} \) function above,
Probability of Occurrence

Value x

Probability Density Function for Gaussian Distribution

\[x = -1 \sigma \]

\[x = +1 \sigma \]

\[x = -2 \]

\[x = +2 \sigma \]

Cumulative Distribution Function for Gaussian Distribution

\[F_x(x) \text{ CDF} \]

\[f_x(x) \text{ PDF} \]

Figure 6-3 Probability within a given range using Gaussian distribution.

\[\text{erf}(2) = 0.954, \text{ or } 95.4\%. \] For a \(-1\sigma\) error, the error function of \(-0.707\) is \(-0.682\). The distribution function is 0.159, as shown in Figure 6-3.

Therefore, for \(\pm 1\sigma\), the probability of being outside these limits is 0.318. The probability of being within these limits is \(1 - 0.318 = 0.682\), or 68.2\%. Given the range of x, the probability that the solution falls within the range is easily calculated.

Note that if the number of samples is not infinite, then the Gaussian limit may not be accurate and will degrade according to the number of samples that are taken.

6.2 Quantization and Sampling Errors

Since all digital systems are discrete and not continuous, the digitizing process creates errors between the digital samples. This error is created because a digitizing circuit samples the signal at regular intervals, resulting in a sequence of numerical values that simulates a continuous signal. If a signal is changing continuously with time, then there is an error caused by the estimation of the signal between the sample points. If the sample rate is increased, this estimation error is reduced.
There are basically two types of errors going from the analog signal to the digital signal: quantization error and sampling error. Quantization error is an error in the resolution of the analog signal due to discrete steps. This is dependent on the number of bits in the analog-to-digital converter (ADC); the more bits the less quantization error. The value of the analog signal is now discrete and is either at one bit position or another. An example of quantization error is shown in Figure 6-4.

![Quantization error in the ADC.](image)

Figure 6-4 Quantization error in the ADC.

Sampling error comes about because the samples are noncontinuous samples. Basically the sampling function samples at a point in time and extrapolates an estimate of the continuous analog signal from the points. This is dependent on the sample rate.

For example, radar range is based on the time of arrival (TOA) of the pulse that is sent and returned. This is the basic principle that ranging and tracking radars work on when calculating the range of an aircraft from the ground station. One source of range error is called sampling error. If the arrival pulse is sampled, the sampling error is based on the distance between the sample pulses; half way on either side is the worst-case sampling error, as shown in Figure 6-5.

Since the probability that this occurrence is equal across the worst-case points, it is referred to as being uniform or having a uniform distribution. The variance for a uniform distribution is

\[a^2 = a^2/3, \]

where distribution varies between \(+a\) and \(-a\).
The standard deviation is equal to the square root of the variance:

\[\sigma = \sqrt{\frac{a^2}{3}} \]

For example, if the clock rate is 50 MHz, the time between pulses is 20 nsec, so \(a \), or the peak deviation, is equal to 10 nsec. Therefore the standard deviation is equal to

\[\sigma = \sqrt{\frac{10^2}{3}} = 5.77\text{ns} \]

If a number of samples are taken and averaged out, or integrated, then the standard deviation is reduced by

\[\sigma_{\text{ave}} = \frac{\sigma}{\sqrt{n_{\text{samples}}}} \]

If the number of samples that are to be averaged is 9, then the standard deviation is

\[\sigma_{\text{ave}} = \frac{5.77\text{ns}}{\sqrt{9}} = 1.92\text{ns} \]

In order to determine the overall error, the distribution from each source of error needs to be combined using a root-sum-square (RSS) solution. This
is done by squaring each of the standard deviations, summing, and then taking the square root of the result for the final error. For example, if one error has a $\sigma = 1.92$ and another independent error has a $\sigma = 1.45$, then the overall error is

$$\text{Total error } \sigma = \sqrt{(1.92^2 + 1.45^2)} = 2.41 \text{ nsec}.$$

This combination of the uniform distributions results in a normal or Gaussian distribution overall, in accordance with the central limit theorem. This is one of the reasons that the Gaussian or normal distribution is most commonly used. Therefore, even though each error is uniform and is analyzed using the uniform distribution, the resultant error is Gaussian and follows the Gaussian distribution for analysis. However, this assumes independent sources of error. In other words, one source of error cannot be related or dependent on another source of error.

6.3 Probability of Error

The performance of the demodulation is measured as either the bit error rate (BER) or it is predicted using the probability of error (P_e) as shown for BPSK:

$$\text{BER} = \frac{\text{Err}}{\text{TNB}}$$

$$P = \frac{1}{2} \text{erfc} \left(\frac{E_b}{N_0} \right) = P_{fa}$$

where

- Err = number of bit errors,
- TNB = number of total bits,
- P_e = probability of error,
- E_b = energy in a bit,
- N_0 = noise power spectral density (noise power in a 1 Hz bandwidth),
- $\text{erfc} = 1 - \text{erf}$ = complimentary error function.

The BER is calculated by adding up the number of bits that were in error and dividing by the total number of bits for that particular measurement. BER counters continuously calculate this ratio. The BER could be called the bit error ratio, since it is more related to a ratio than it is to time. An instrument used to measure or calculate BER is a bit error rate tester (BERT).
Normally the probability of error (P_e) is calculated from an estimated E_b/N_0 for a given type of modulation. The probability of getting a zero when actually a one was sent for a BPSK modulated signal is

$$P_{e1} = \frac{1}{2} \text{erfc}(\frac{E_b}{N_0})^{1/2}.$$

The probability of getting a one when a zero was sent is

$$P_{e0} = \frac{1}{2} \text{erfc}(\frac{E_b}{N_0})^{1/2}.$$

The average of these two probabilities is

$$P_e = \frac{1}{2} \text{erfc}(\frac{E_b}{N_0})^{1/2}.$$

Note that the average probability is the same as each of the individual probabilities. This is because the probabilities are the same and are independent (i.e., either a one was sent and interpreted as a zero, or a zero was sent and interpreted as a one). The probabilities happen at different times. The P_e for other systems are as follows:

- Coherent FSK: $P_e = \frac{1}{2} \text{erfc}(\frac{E_b/2N_0}{\frac{1}{2}})$
- Noncoherent FSK: $P_e = \frac{1}{2} \exp(-\frac{E_b}{N_0})$
- DPSK (noncoherent): $P_e = \frac{1}{2} \exp(-\frac{E_b}{N_0})$
- Coherent QPSK and coherent MSK: $P_e = \frac{1}{2} \text{erfc}(\frac{E_b/N_0}{\frac{1}{2}}) - \frac{1}{2} \text{erfc}^2(\frac{E_b/N_0}{\frac{1}{2}})$. Note: The second term can be eliminated for $E_b/N_0 >> 1$.

A spreadsheet with these plotted curves is shown in Figure 6-6. Note that the coherent systems provide a better P_e for a given E_b/N_0, or less E_b/N_0 is required for the same P_e. Also note that coherent BPSK and coherent QPSK are fairly close at higher signal levels and diverge with small E_b/N_0 ratios.

6.4 Probability of Detection and False Alarms

Pulsed systems, such as pulse position modulation (PPM) systems and radars, use probability of detection and probability of false alarms since data are not sent on a continuous basis. They operate on whether or not a pulse was detected correctly, and whether or not noise or other signals caused the system to detect a signal that was not the true signal (false alarm). It is not just a matter of whether a zero or a one was sent, but
Figure 6-6 Probability of error curves for a given E_b/N_o.

whether anything was sent at all. Therefore errors can come from missed detection or false detection.

The time between false alarms (T_{fa}) is dependent on the integration time, which determines the number of pulses integrated (N_{pi}). The number of pulses integrated is divided by the probability of false alarm (P_{fa}) as shown:

$$T_{fa} = N_{pi} / P_{fa}.$$

Thus the longer the integration time, the fewer false alarms will be received in a given period of time.

For a pulsed system, there will be times when nothing is sent, yet the detection process needs to detect whether or not something was sent. There is a threshold set in the system to detect the signal. If nothing is sent and the detection threshold is too low, then the probability of false alarms or detections will be high when there is no signal present. If the detection threshold is set too high to avoid false alarms, then the probability of detecting the signal when it is present will be too low. If the probability of detection is increased to ensure detection of the signal, then there is a greater chance that we will detect noise, which increases the probability of a false alarm. A trade-off specifies where to set the threshold. Notice that the probability of
detection describes whether or not the signal was detected. The probability of false alarm refers to whether or not noise was detected. This should not be confused with whether a zero or a one was detected, which is evaluated using the probability of error. A curve showing the PDFs of one-sided noise and signal plus noise is shown in Figure 6-7.

- Use cumulative distribution function to determine the probabilities of these one sided noise and S+N gaussian probability density functions.
- CDF from the right – sum probabilities from the right.

Another useful graph in determining what threshold to select is shown in Figure 6-8. The probabilities of detection and false alarms are shown with respect to the level of the SNR. The energy \(E_p \) is selected to provide the desired probability of detection and probability of false alarm. The energy is the energy contained in the pulse \(E_p \). The cumulative distribution functions are used to calculate these parameters. For example, if the threshold is selected at a value of 2.4 (see Figure 6-7), then the cumulative distribution function from 2.4 to \(+\infty\) (area under the signal + noise curve from 2.4) is the probability of detection. The probability of false alarm is the cumulative distribution function from 2.4 to \(+\infty\) (area under the noise curve from 2.4). This point, where the two Gaussian curves intersect, provides a good point to select, and the trade-offs between detection and false alarms are preformed to optimize a design to meet the requirements for the system.
Figure 6-8: Probability of detection and false alarms versus SNR.
The cumulative distribution function for Gaussian distribution can be used since these processes are Gaussian. Since the P_{fa} and P_d are integrating the function from 2.4 to $+\infty$, and the total distribution function is equal to unity, then the distribution function is equal to

$$F_x(x) = 1 - \left(\frac{1}{2} \left[1 + \text{erf} \left(\frac{x}{\sqrt{2\sigma}} \right) \right] \right) = \frac{1}{2} \left(1 - \text{erf} \left(\frac{x}{\sqrt{2\sigma}} \right) \right)$$

The complementary error function is equal to

$$\text{erfc} = 1 - \text{erf}.$$ Substituting the erfc in the equation above produces

$$F_x(x) = \frac{1}{2} \left(\text{erfc} \left(\frac{x}{\sqrt{2\sigma}} \right) \right)$$

The variance for both P_{fa} and P_d is

$$\text{Var} = \frac{1}{2}(E_b/N_o).$$

The standard deviation or σ is the square root of the variance:

$$\text{StdDev} = \sqrt{\frac{E_b}{N_o} \frac{1}{2}}$$

Substituting the standard deviation into the above equation gives

$$F_x(x) = \frac{1}{2} \left(\text{erfc} \left(\frac{x}{\sqrt{E_p/N_o}} \right) \right) = P_{fa}$$

Since the P_d contains an offset of the actual standard deviation from zero, this offset is included in the equation as follows:

$$F_x(x) = \frac{1}{2} \left(\text{erfc} \left(\frac{x}{\sqrt{E_p/N_o}} - \sqrt{\frac{E_p}{N_o}} \right) \right) = P_d$$

This P_d is the probability of detecting one pulse at a time. If there are 10 pulses required for a system to receive, and each pulse is independent and has the same probability for detection, then the probability of detecting all 10 pulses is $(P_d)^{10}$ for the 10 independent probabilities for each pulse sent.
Error correction is frequently used to provide an increased probability of detection of each of the pulses. In many systems, the probability of missing a pulse needs to be determined and can be calculated by probability theory using the binomial distribution function (BDF).

6.5 Pulsed System Probabilities Using the BDF

The BDF is used to calculate the probability of missing a pulse, as mentioned above. For example, suppose that the probability of detection is 99% for one pulse according to the criteria for probability of detection as described in Section 6.5. If a message consists of 10 pulses, then the probability of getting all 10 pulses is $0.99^{10} = 0.904$, or 90.4%:

$$p(9) = \binom{10}{9} p^9 (1 - p)^{10-9} = 10 \times 0.99^9 \times 0.01^{10} = 9.1\%$$

The probability of missing one pulse is determined by using the binomial theorem as follows:

$$p(9) = \binom{10}{9} p^9 (1 - p)^{10-9} = 10 \times 0.99^9 \times 0.01^{10} = 9.1\%$$

Therefore the percentage of errors that result in only 1 pulse lost out of 10 is

$$\text{Percent (one pulse lost)} = \frac{9.1\%}{100\% - 90.4\%} = 95\%.$$

If there are errors in the system, 95% of the time they will be caused by one missing pulse. By the same analysis, the percent of the time that the errors in the system are caused by two pulses missing is 4.3%, and so forth, for each of the possibilities of missing pulses. The total possibilities of errors are summed to equal 100%.

6.6 Error Detection and Correction

Error detection and correction are used to improve the integrity and continuity of service for a system. The integrity is concerned with how reliable the received information is; that is, if information is received, how accurate are the data and is it data or noise. Error detection can be used to inform the system that the data are false.
Continuity of service is concerned with how often the data are missed, which disrupts the continuity of the data stream. Error correction is used to fill in the missing or corrupted data to enhance the continuity of service. There are many techniques used to perform both error detection and error correction. When designing a transceiver, the requirements need to be known as well as the amount of overhead the system can tolerate. Note that error detection and error correction require extra bits to be sent that are not data bits. Therefore the amount of error detection and error correction can significantly reduce the data capacity of a system, which is a trade-off in the system design. The extra bits are often referred to as overhead.

6.6.1 Error Detection

There are several different methods of detecting errors in a system and informing the receiver that the information received from the transmitter is in error. If an error is detected, then the receiver can either discard the information or send a request to the transmitter to resend the information.

There are three main detection schemes that are commonly used for error detection in digital communication systems today. These are parity, checksum, and cyclic redundancy check (CRC).

6.6.2 Error Detection Using Parity

Parity is used to determine if a message contains errors. The parity bit is attached to the end of a digital message and is used to make the number of “1”s that are in the message either odd or even. For example, if the message that is sent is 11011 and odd parity is being used, then the parity bit would be a “1” to make the number of “1”s in the message an odd number. Therefore the transmitter would send 110111. If even parity is used, then the parity bit would be a “0” to ensure that the number of “1”s is even, so that the digital signal that is sent would be 110110. If the digital message is 11010, then the digital signal that is sent would be 110100 for odd parity and 110101 for even parity.

In order to generate the parity bit, a simple exclusive-OR function of all the bits in the message including an extra bit produces the correct parity bit to be sent. The extra bit equals a “1” for odd parity and a “0” for even parity. For example, if the message is 11011 and the system is using odd parity (extra bit equals 1), then the parity bit would be

\[1 \text{ XOR } 1 \text{ XOR } 0 \text{ XOR } 1 \text{ XOR } 1 \text{ XOR } 1(\text{extra bit}) = 1. \]

XOR is an exclusive-OR function in the digital domain. Therefore the digital signal that is sent for this message would be 110111.
The exclusive-OR function is best described in the form of a truth table. When two bits are XORed then the truth table yields the resultant bit value. An XORed truth table is shown below:

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Resultant bit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>XOR</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>XOR</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>XOR</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>XOR</td>
<td>0</td>
</tr>
</tbody>
</table>

The receiver detects an error if the wrong parity is detected. If odd parity is used, all of the received bits are exclusive-ORed, and if the result is a “1” then there were no errors detected. If the result is a “0,” then this constitutes an error, known as a parity error. If even parity is used, then a “0” constitutes no errors detected and a “1” means that there is a parity error. For example, using odd parity, the receiver detects 110011 and by exclusive-ORing all the received bits, the output is a “0,” which means that the system has a parity error.

One of the major drawbacks to this type of error detection is multiple errors. If more that one error occurs, then this method of error detection does not perform very well. If two errors occur, it would look as if no errors occurred. This is true for all even amounts of error.

6.6.3 Error Detection Using Checksum

Another method of detecting errors in a system is referred to as checksum. As the name connotes, this process sums up the digital data characters as they are being sent. When it has a total, the least significant byte of the sum total is appended to the data stream that is being sent.

The receiver performs the same operation by summing the input digital data characters and then comparing the least significant byte to the received least significant byte, and if they are the same, then no error is detected. If they are different, then an error is detected, which is called a checksum error. For example, if the message contained the following characters,

110, 011, 111, 011, 110, 001, 111, 110,

then the digital sum would be 100, 111. The least significant byte is 111, which is attached to the message, so the final digital signal sent is

110, 011, 111, 011, 110, 001, 111, 110, 111.
The receiver would perform the same summing operation with the incoming data without the checksum that was sent. If the least significant byte is 111, then there is no checksum error detected. If it is different, then there would be a checksum error. Note that the receiver knows the length of the transmitted message.

6.6.4 Error Detection Using CRC

One of the best methods for error detection is known as a CRC. This method uses division of the data polynomial $D(x)$ by the generator polynomial $G(x)$, with the remainder being generated by using an XOR function instead of subtraction. The final remainder is truncated to the size of the CRC and is attached to the message for error detection. The data polynomial is multiplied by the number of bits in the CRC code to provide enough placeholders for the CRC. In other words, the remainder has to be large enough to contain the size of the CRC.

The polynomial is simply a mathematical expression to calculate the value of a binary bit stream. For example, a bit stream of 10101 would have a polynomial of $X^4 + X^2 + X^0$. The numeric value is calculated by substituting $X = 2$: $2^4 + 2^2 + 2^0 = 21$. Therefore, if there is a “1” in the binary number, the value it represents is included in the polynomial. For example, the first one on the left in the above digital word has a value of 16 in binary. Therefore, since $2^4 = 16$, this is included in the polynomial as X^4.

The receiver performs the same operation above using the complete message, including the attached error detection bits, and divides by the generator polynomial. If the remainder is zero, then no errors were detected. For example, suppose we have a data polynomial, which is the data to be sent, and a generator polynomial, which is selected for a particular application, as shown below:

\[
D(x) = X^6 + X^4 + X^3 + X^0101101
\]
\[
G(x) = X^4 + X^3 + X^2 + X^011101.
\]

To provide the required placeholders for the CRC, $D(x)$ is multiplied by X^4, which extends the data word by four places as shown below:

\[
X^4(X^6 + X^4 + X^3 + X^0) = X^{10} + X^8 + X^7 + X^410110010000
\]

Note: This process is equivalent to adding the number of zeros as placeholders to the data polynomial since the generator polynomial is X^4 (4 zeros).
The division using XOR instead of subtraction is as follows:

\[
\begin{array}{c}
\begin{array}{c}
1111110 \\
110110011000
\end{array}
\end{array}
\]

\[
\begin{array}{c}
11101 \quad 11101 \quad 010110 \\
11101 \quad 0101111 \\
11101 \quad 010100 \\
11101 \quad 011011 \\
11101 \quad 000000
\end{array}
\]

Therefore the CRC would be 0110 and the digital signal that would be transmitted is the data plus the CRC, which equals 10110010110.

The receiver would receive all the data including the CRC and perform the same function as shown below:

\[
\begin{array}{c}
\begin{array}{c}
1111110 \\
10110010110
\end{array}
\end{array}
\]

\[
\begin{array}{c}
11101 \quad 11101 \quad 0110110 \\
11101 \quad 010100 \\
11101 \quad 010011 \\
11101 \quad 011110 \\
11101 \quad 000000
\end{array}
\]

Since the remainder is zero, there are no errors detected by the CRC. If there is a remainder, then there are errors in the received signal. Some of the standard CRCs that are used in the industry are listed in Table 6-1.
Table 6-1 A list of common CRC generator polynomials.

- CRC-5 USB token packets \(G(x) = x^5 + x^2 + x^0 \)
- CRC-12 Telecom Systems \(G(x) = x^{12} + x^{11} + x^3 + x^2 + x^1 + x^0 \)
- CRC-ANSI \(G(x) = x^{16} + x^{15} + x^2 + x^0 \)
- CRC-CCITT \(G(x) = x^{16} + x^{12} + x^5 + x^0 \)
- IBM-SDLC \(G(x) = x^{16} + x^{15} + x^{14} + x^7 + x^4 + x^2 + x^1 + x^0 \)
- IEC TC57 \(G(x) = x^{16} + x^{14} + x^{11} + x^8 + x^6 + x^5 + x^4 + x^0 \)
- CRC-32 IEEE Standard 802.3 \(G(x) = x^{32} + x^{26} + x^{23} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^3 + x^2 + x^0 \)
- CRC-32C (Castagnoli) \(G(x) = x^{32} + x^{28} + x^{27} + x^{26} + x^{25} + x^{23} + x^{22} + x^{20} + x^{19} + x^{18} + x^{14} + x^{13} + x^{11} + x^{10} + x^9 + x^8 + x^6 + x^0 \)
- CRC-64-ISO ISO 3309 \(G(x) = x^{64} + x^4 + x^3 + x^1 + x^0 \)
- CRC-64 ECMA-182 \(G(x) = x^{64} + x^{62} + x^{57} + x^{55} + x^{54} + x^{53} + x^{52} + x^{47} + x^{46} + x^{45} + x^{43} + x^{39} + x^{38} + x^{37} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{29} + x^{27} + x^{24} + x^{23} + x^{22} + x^{21} + x^{19} + x^{17} + x^{13} + x^{12} + x^{10} + x^9 + x^7 + x^5 + x^3 + x^0 \)
- Others not listed

6.6.5 Error Correction

Error correction detects and also fixes errors or corrects the data that was sent. One form of error correction is to use redundancy. Even though it is not actually correcting the error that is sent, this method involves sending the data more than once. Another form of error correction, which is really a true form of error correction, is forward error correction (FEC).

6.6.6 Error Correction using Redundancy

Error correction using redundancy means correcting the errors by having the transmitter resend the data. There are basically two concepts for this type of correction.

The first method requires no feedback on the message that was sent. The transmitter merely sends the data more than once in order to increase the probability that the message will be received. For example, if a burst signal occurs on the first time the message is sent, then by sending the message again, the probability is increased that the receiver will receive the message.

The second method requires feedback from the receiver. The transmitter sends the message to the receiver, and if the receiver detects an error, it sends out a request to the transmitter to resend the message. The process is referred to as automatic repeat request (ARQ).

Both of these methods take time, which slows down the data rate for a system, making these rather inefficient means of correction or error recovery. Also, if an error occurs in every message that is transmitted, then these methods are not a viable means of error correction.
6.6.7 Forward Error Correction

Forward error correction not only detects errors, but also makes an attempt to correct the error so that the transmitter does not have to send the message again. There are several types of FEC, from very simple methods that can correct one error to very complex methods that can correct multiple errors. A process known as interleaving can improve some error correction methods.

6.6.8 Interleaving

Large interfering signals may occur for a short period of time, or burst, causing several errors for that short period of time. Since most error correcting schemes only correct a small percentage of errors in a data stream, they are unable to correct several errors at one time. To minimize this problem, the data are spread out and interleaved with other data signals so that when a burst occurs, instead of affecting one data message with several errors, only a small number of errors are present in each data message. Therefore, when the received data are deinterleaved, the error correction for each message contains a minimal number of errors to correct.

To illustrate interleaving, we start out with a digital signal using “a” as a placeholder for the bit value in a message. An example would be a a a a a a a.

Suppose a burst jammer occurred that was wide enough to cause three of these bits to be in error (the underlined bits). If there were three digital messages that needed to be sent, interleaving could be performed to allow only 1 bit error in message “a,” as shown below:

Message a Message b Message c
a a a a a a a b b b b b b c c c c c c c c

Interleaved Messages a, b, c
a b c a b c a b c a b c a b c a b c

The jamming signal still caused three errors at the same point in time, however, it only caused one error per message. The deinterleaving process is used to sort out the bits, then error correction is used to correct the bits in error for each message:

Received messages after deinterleaving
a a a a a a a b b b b b b c c c c c c c c
Therefore, instead of losing message “a” one error is corrected in each of the messages and the correct data are obtained. This method of interleaving and deinterleaving the data is used extensively in systems that are susceptible to burst jammers or burst noise.

6.6.9 Types of FEC

There are two types of FEC that are commonly used in communications. These are referred to as block codes and convolutional codes.

6.6.10 Block Codes

Block codes receive \(k \) information bits into a block encoder, which is memoryless (does not depend on past events). The block encoder maps these information bits into an \(n \)-symbol output block with a rate \(R = k/n \) (see Figure 6-9a). Block codes are specified as \((n,k)\), where \(n \) is the number of bits in the output code word and \(k \) is the number of information bits or data bits in the data word. For example, a block code of \((7,4)\) would have 7 bits

\[
\begin{align*}
\text{k Information Bits} & \quad \text{Block Encoder} & \quad \text{n bit code word} \\
& \quad \text{Maps k information bits into an n-symbol output block} & \quad n = \text{Block Length}
\end{align*}
\]

Figure 6-9 Block codes and convolutional codes for FEC.
in the output code word and 4 bits in the data code word. Therefore each 4-bit information/data code word is mapped into a 7-bit symbol code word output. This means there are \(2^k\) number of distinct 4-bit input messages, which also means that there are \(2^k\) number of distinct 7-bit output code words. The output code is called a block code. The number of bits in the output code word is always greater than the number of bits in the data word: \(n > k\).

6.6.11 Linear Block Codes

For long block codes, \(2^k\) with length \(n\) is complex and can take up a lot of memory. In order to reduce the amount of memory needed for these code words, linear block codes are used. These codes are easier to encode because they only store the generator matrix and do a linear combination of the generator matrix and the data word; in other words, they perform a modulo-2 sum of two linear block code words which produces another linear block code word (see Table 6-2).

Table 6-2 Linear systematic block code generator.

<table>
<thead>
<tr>
<th>GENERATOR MATRIX</th>
<th>MESSAGE</th>
<th>MODULO-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1000111))</td>
<td>1</td>
<td>((1000111))</td>
</tr>
<tr>
<td>((0100110))</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>((0010111))</td>
<td>1</td>
<td>((0010111))</td>
</tr>
<tr>
<td>((0001101))</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Systematic Code Word = \((1010100)\)

<table>
<thead>
<tr>
<th>Identity Matrix</th>
<th>MESSAGES</th>
<th>CODEWORDS</th>
<th>((7,4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0000))</td>
<td>((0000000))</td>
<td>((0001101))</td>
<td></td>
</tr>
<tr>
<td>((0001))</td>
<td>((0001101))</td>
<td>((0010111))</td>
<td></td>
</tr>
<tr>
<td>((0010))</td>
<td>((0010111))</td>
<td>((0011010))</td>
<td></td>
</tr>
<tr>
<td>((0011))</td>
<td>((0011010))</td>
<td>((0100110))</td>
<td></td>
</tr>
<tr>
<td>((0100))</td>
<td>((0100110))</td>
<td>((0101111))</td>
<td></td>
</tr>
<tr>
<td>((0101))</td>
<td>((0101111))</td>
<td>((0110001))</td>
<td></td>
</tr>
<tr>
<td>((0110))</td>
<td>((0110001))</td>
<td>((0111100))</td>
<td></td>
</tr>
<tr>
<td>((0111))</td>
<td>((0111100))</td>
<td>((1000111))</td>
<td></td>
</tr>
<tr>
<td>((1000))</td>
<td>((1000111))</td>
<td>((1001110))</td>
<td></td>
</tr>
<tr>
<td>((1001))</td>
<td>((1001110))</td>
<td>((1010100))</td>
<td></td>
</tr>
<tr>
<td>((1010))</td>
<td>((1010100))</td>
<td>((1011001))</td>
<td></td>
</tr>
<tr>
<td>((1011))</td>
<td>((1011001))</td>
<td>((1100101))</td>
<td></td>
</tr>
<tr>
<td>((1100))</td>
<td>((1100101))</td>
<td>((1101000))</td>
<td></td>
</tr>
<tr>
<td>((1101))</td>
<td>((1101000))</td>
<td>((1110010))</td>
<td></td>
</tr>
<tr>
<td>((1110))</td>
<td>((1110010))</td>
<td>((1111111))</td>
<td></td>
</tr>
<tr>
<td>((1111))</td>
<td>((1111111))</td>
<td>((1111111))</td>
<td></td>
</tr>
</tbody>
</table>
In addition, many codes are known as systematic codes. Systematic codes contain the actual information bits plus some parity bits. For a (7,4) linear block code, the code word contains the 4-bit data word plus 3 bits of parity (see Table 6-2).

Error detection for linear systematic block codes calculates the syndrome. The syndrome is equal to the received matrix \(r \) times the transpose of the parity check matrix \(H^{-T} \):

\[
s = r^*H^{-T}.
\]

If the syndrome is equal to zero, then there are no errors. Table 6-3 shows the process that is used to generate the syndrome.

Table 6-3 Syndrome generator for linear systematic block codes.

<table>
<thead>
<tr>
<th>(s = (s_2, s_1, s_0) =)</th>
<th>(H^T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((r_6, r_5, r_4, r_3, r_2, r_1, r_0))</td>
<td>1 1 0</td>
</tr>
<tr>
<td>1 1 1 = (s_2 = r_5 + r_4 + r_3 + r_2)</td>
<td>1 0 1</td>
</tr>
<tr>
<td>(s_1 = r_6 + r_5 + r_4 + r_1)</td>
<td>1 0 0</td>
</tr>
<tr>
<td>(s_0 = r_6 + r_4 + r_3 + r_0)</td>
<td>0 1 0</td>
</tr>
<tr>
<td>(s_2, s_1, s_0 = 0,0,0) no errors</td>
<td>0 0 1</td>
</tr>
</tbody>
</table>

An example which shows the generation of the syndrome with both the no-error case and the case where there is an error occurring in the last bit is shown in Table 6-4. The syndrome is equal to \((0,0,0) \) for the no-error case and is equal to \((0,0,1) \) for the error case. This is using the same (7,4) linear block code as before. Therefore the error is detected with the syndrome not equal to \((0,0,0) \).

A measure of the ability to distinguish different code words is called the minimum distance. The minimum distance between the code words is the number of bits that are different. In order to calculate the minimum distance between code words, the code words are modulo-2 added
Table 6-4 Syndrome generator example, error detection for linear systematic block codes.

<table>
<thead>
<tr>
<th>GENERATOR MATRIX</th>
<th>PARITY MATRIX H</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1000011)</td>
<td>(0111100)</td>
</tr>
<tr>
<td>(0100110)</td>
<td>(1110010)</td>
</tr>
<tr>
<td>(0010111)</td>
<td>(1011001)</td>
</tr>
<tr>
<td>(0001101)</td>
<td></td>
</tr>
</tbody>
</table>

Identity Matrix

<table>
<thead>
<tr>
<th>CODE WORD RECEIVED</th>
<th>H^{-1} MODULO-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1010100)</td>
<td>* 0 1 1 0 1 1</td>
</tr>
<tr>
<td></td>
<td>1 1 1 = 1 1 1</td>
</tr>
<tr>
<td></td>
<td>1 0 1 0 0</td>
</tr>
<tr>
<td></td>
<td>1 0 0 1 0</td>
</tr>
<tr>
<td></td>
<td>0 1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

Equal to zero, No Errors

<table>
<thead>
<tr>
<th>CODE WORD RECEIVED</th>
<th>H^{-1} MODULO-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1010101)</td>
<td>* 0 1 1 0 1 1</td>
</tr>
<tr>
<td></td>
<td>1 1 1 = 1 1 1</td>
</tr>
<tr>
<td></td>
<td>1 0 1 0 0</td>
</tr>
<tr>
<td></td>
<td>1 0 0 1 0</td>
</tr>
<tr>
<td></td>
<td>0 1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 1</td>
</tr>
<tr>
<td></td>
<td>0 1 1</td>
</tr>
</tbody>
</table>

Not equal to zero, errors

together and the number of “1”s in the resultant is the minimum distance. For example,

Code word 1 = 1100101
Code word 2 = 1000111
Modulo-2 = 0100110 = three “1”s
Minimum distance = 3.

This is also equal to the minimum weight for linear block codes, three “1”s in code word 2. To ensure that the minimum weight is accurate, all code possibilities need to be examined to determine the fewest number of “1”s in a code word.

The ability for an error detection method to detect errors is based on the minimum distance calculated. The error detection capability, or the number
of errors that can be detected, is equal to

\[
\text{Number of errors detected} = d_{\text{min}} - 1,
\]

where \(d_{\text{min}}\) is the minimum distance. This example shows that the number of errors that can be detected is equal to

\[
d_{\text{min}} - 1 = 3 - 1 = 2.
\]

Even though the system is able to detect more errors equal to and greater than \(d_{\text{min}}\), it cannot detect all of the errors. Therefore undetected errors will pass through the system.

The ability of an error correction method to correct errors is also based on the minimum distance calculated. The error correction capability, or the number of errors that can be corrected, is equal to

\[
\text{Number of errors corrected} = \frac{(d_{\text{min}} - 1)}{2},
\]

where \(d_{\text{min}}\) is the minimum distance. This example shows that the number of errors that can be corrected is equal to

\[
\text{Number of errors corrected} = \frac{(d_{\text{min}} - 1)}{2} = \frac{(3 - 1)}{2} = 1.
\]

An error correction method can do a combination of both error correction and detection simultaneously. For example, if the \(d_{\text{min}}\) is equal to 10, the combined ability of this method could correct three errors and detect six errors, or correct four errors and detect five. Error correction and detection codes often specify the minimum distance in their description:

\[(7,4,3) = (n,k,d_{\text{min}}).\]

An example of error correction is shown in Table 6-5. The error vector, which is the received vector that contains an error, is multiplied by the transpose of the parity check matrix \(H^T\). This generates three error equations. These equations are equal to the syndrome calculated in Table 6-4, which is equal to \((0,0,1)\). There are three equations and seven unknowns, therefore the possible solutions are equal to

\[2^{(7-3)} = 2^4 = 16.\]

These equations are solved to find the solution with the most zeros. The solutions with the most zeros are known as coset error vectors. The example shows that if all the \(e\) values are set to zero except for \(e_0 = 1\), then the coset
Table 6-5 Error vector and error correction example for linear systematic block codes.

<table>
<thead>
<tr>
<th>ERROR VECTOR (e_0, e_1, e_2, e_3, e_4, e_5, e_6)</th>
<th>COSET ERROR VECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_0, e_1, e_2, e_3, e_4, e_5, e_6 = 010 0 0 0 0 0 1</td>
<td>e_5 e_6 = 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>010 e_1 e_6 = 0 0 0 1 0 0 0</td>
<td>e_1 = 0 0 0 1 0 0 0</td>
</tr>
<tr>
<td>100 e_2 e_5 = 0 0 0 0 0 0 1</td>
<td>e_2 = 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>010 e_3 e_0 = 0 0 0 1 0 0 0</td>
<td>e_3 = 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>001 0 0 0 0 0 0 1</td>
<td>e_6 = 0 0 0 0 0 0 1</td>
</tr>
</tbody>
</table>

\[
e_5 + e_4 + e_3 + e_0 = 0
\]

\[
e_6 + e_5 + e_4 + e_1 = 0
\]

\[
e_6 + e_4 + e_3 + e_0 = 1
\]

\[
V_c = r + e = 1010101 + 0000001 = 1010100
\]

Corrected bit in code word

The error vector is equal to 0000001. To correct the code error, the received code is modulo-2 added to the coset error vector to correct the error:

Received code = 1010101
Coset error vector = 0000001
Correct code = 1010100

The probability of receiving an undetected error for block codes is calculated with the following equation:

\[
P_u(E) = \sum_{i=1}^{n} A_i p^i (1 - p)^{n-i}
\]

where

\[
p = \text{probability of error},
\]

\[
i = \text{number of “1”s in the code word},
\]

\[
A_i = \text{weight distribution of the codes (number of code words with the number of “1”s specified by } i).\]

An example is shown in Table 6-6 for a (7,4) block code. Note that there is one code word with no “1”s, one code word with seven “1”s, seven code words with three “1”s, seven code words with four “1”s, and no code words
Table 6-6 Probability of undetected error performance of block codes.

<table>
<thead>
<tr>
<th>CODEWORDS</th>
<th>(i) = # of ‘1’s</th>
<th>(A_i) is the number of code words with the same number of ‘1’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0000000)</td>
<td>(i = 1)</td>
<td>(A_0 = 1)</td>
</tr>
<tr>
<td>(0001101)</td>
<td>(i = 2)</td>
<td>(A_1 = 0)</td>
</tr>
<tr>
<td>(0010111)</td>
<td>(i = 3)</td>
<td>(A_2 = 0)</td>
</tr>
<tr>
<td>(0011010)</td>
<td>(i = 4)</td>
<td>(A_3 = 7)</td>
</tr>
<tr>
<td>(0100110)</td>
<td>(i = 5)</td>
<td>(A_4 = 7)</td>
</tr>
<tr>
<td>(0101011)</td>
<td>(i = 6)</td>
<td>(A_5 = 0)</td>
</tr>
<tr>
<td>(0110001)</td>
<td>(i = 7)</td>
<td>(A_6 = 0)</td>
</tr>
<tr>
<td>(0111000)</td>
<td>(i = 8)</td>
<td>(A_7 = 1)</td>
</tr>
<tr>
<td>(1000011)</td>
<td>(i = 9)</td>
<td></td>
</tr>
<tr>
<td>(1001110)</td>
<td>(i = 10)</td>
<td></td>
</tr>
<tr>
<td>(1010100)</td>
<td>(i = 11)</td>
<td></td>
</tr>
<tr>
<td>(1011101)</td>
<td>(i = 12)</td>
<td></td>
</tr>
<tr>
<td>(1100101)</td>
<td>(i = 13)</td>
<td></td>
</tr>
<tr>
<td>(1110001)</td>
<td>(i = 14)</td>
<td></td>
</tr>
<tr>
<td>(1111001)</td>
<td>(i = 15)</td>
<td></td>
</tr>
<tr>
<td>(1111111)</td>
<td>(i = 16)</td>
<td></td>
</tr>
</tbody>
</table>

with one, two, five, and six “1”s. Therefore, this example shows that the probability of an undetected error is equal to

\[
P_u(E) = 7p^3(1 - p)^4 + 7p^4(1 - p)^3 + p^7.
\]

If the probability of error equals \(10^{-2}\), then the probability of an undetected error is

\[
P_u(E) = 7(10^{-2})^3(1 - (10^{-2}))^4 + 7(10^{-2})^4(1 - (10^{-2}))^3 + (10^{-2})^7
\]

\[
= 6.8 \times 10^{-6}.
\]

If the probability of error equals \(10^{-6}\), then the probability of an undetected error is

\[
P_u(E) = 7(10^{-6})^3(1 - (10^{-6}))^4 + 7(10^{-6})^4(1 - (10^{-6}))^3 + (10^{-6})^7
\]

\[
= 7 \times 10^{-18}.
\]

6.6.12 Hamming Code

The Hamming code is a popular block code. The number of bits required for the Hamming code is

\[
2^n \geq m + n + 1,
\]
where
\[n = \text{number of Hamming bits required}, \]
\[m = \text{number of data bits}. \]

Hamming bits are randomly placed in the data message. For example, suppose a digital data stream is 1011000100010, which is 13 bits long. The number of Hamming bits required is
\[2^5 \geq 13 + 5 + 1, \]
where \(n = 5 \). The Hamming bits slots are placed randomly in the data message as follows:

17151483
H 1 0 1 1 H 0 0 H 0 1 0 H 0 0 1 H 0

The bit values of the Hamming bits are calculated by exclusive-ORing the bit positions that contain a “1,” which are 3, 8, 14, 15, 17, as shown below:

\[
\begin{align*}
00011 & \quad 3 \\
01000 & \quad 8 \\
01110 & \quad 14 \\
01111 & \quad 15 \\
10001 & \quad 17 \\
11011 & \quad \text{Hamming Code}
\end{align*}
\]

Therefore the signal that would be sent out of the transmitter would be

\[
\begin{align*}
& \text{H H H H H} \\
& 11011000010100110
\end{align*}
\]

If an error occurs at bit position 15, which means that the “1” value at the transmitted signal at bit 15 is detected as a “0” in the receiver, then the following bit stream would be received:

\[
110011000010100110
\]

\[
\begin{align*}
& \text{H H H H H} \\
& 11011000010100110
\end{align*}
\]
To detect and correct this error, at the receiver, all bits containing a “1” are exclusive-ORed:

00010 2
00011 3
00110 6
01000 8
01101 13
01110 14
10001 17
10010 18
01111 15

The result, 01111 = 15, is equal to the bit position where the error occurred. To correct the error, bit 15 is changed from a “0” to a “1.”

The Hamming block code only corrects one error. Other higher level codes, such as the Reed-Solomon code, has the ability to correct multiple errors. Some other types of codes used for error correction include:

- Hsiao code—which uses a shortened Hamming code.
- Reed-Muller code—used for multiple error corrections.
- Golay code—used in space programs for data communications.

In addition, a type of code that is very popular in communications is known as cyclic code. Cyclic code cyclically shifts a code word to produce another code word. This is a subset of linear block codes, and they use linear sequential circuits such as shift registers with feedback to generate the codes. Since they are serially generated, they are able to be decoded serially. Reed-Solomon code is generated by cyclic codes and is used extensively for communications. Bose-Chaudhuri-Hocquenghem (BCH) code is another good example of a cyclic code. Even Hamming and Golay codes can be made to be cyclic codes.

Sometimes shortened codes are used. This is where the data are zero padded (make some data symbols zero at the encoder); they are not transmitted, however, but they are reinserted at the decoder.

Error correction and detection methods improve the system’s ability to detect and correct errors to ensure more reliable communications. However, the cost of doing this is either more bandwidth to send more bits at a higher rate, or a decrease in data throughput to send more bits at the same rate. These additional bits required for error correction and detection are often referred to as overhead. Along with the overhead concerns with error detection and correction, another caution is that for high error rates (10^{-2}) or more, error correction may actually degrade performance.
6.6.13 Convolutional Codes

Other types of coding schemes that are commonly used are convolutional codes. These types of codes are used because of their simplicity and high performance.

Convolutional code is usually generated using a PN code generator with different taps selected for the XOR functions and a clock rate that selects output symbols generally at a higher rate than the input symbols. For example, suppose the output rate is equal to twice the speed of the input information. This would produce a rate as follows:

\[
R = \frac{\text{Input information bit rate}}{\text{output symbol clock rate}} = \frac{1}{2}.
\]

Also, for convolutional codes, the size of the shift register is called the constraint length. Therefore, if the shift register is seven delays long, then this example would be a convolutional code with rate $\frac{1}{2}$ and constraint length 7 (see Figure 6-9 b). There are many different rates possible. Some of the more commonly used rates are $\frac{1}{2}$, $\frac{3}{4}$, and $\frac{7}{8}$.

The more common methods of decoding these coding schemes use maximum likelihood sequence (MLS) estimation and the Viterbi algorithm. The Viterbi algorithm is a modification of the standard MLS decoding scheme. The MLS performs three basic operations:

1. It calculates the distances (the amount of difference, generally minimizes bit errors) between the symbol sequence and each possible code sequence.

2. It selects the code sequence that has the minimum distance calculated as being the correct code sequence.

3. It outputs this sequence as the MLS estimation of the received sequence.

Therefore, to retrieve the data information that was sent, the receiver performs the deinterleaving process and sorts out the data bits in the correct messages. Then a decoder, such as a Viterbi decoder, is used to perform the necessary error correction to receive reliable data.

6.7 Viterbi Decoder

A Viterbi decoder is a real-time decoder for very high speed, short codes, with a constraint length of less than 10. It is a major simplification of the
MLS estimator. The basic concept is that it makes real-time decisions at each node as the bits progress through the algorithm. There are only two paths that reach a node in the trellis diagram, and the Viterbi algorithm makes a decision about which of the paths is more likely to be correct (see Figure 6-10). Only the closest path to the received sequence needs to be retained.

Figure 6-10 Viterbi decoder trellis diagram.

6.7.1 Multi-h

Multi-h is a technique to improve detection of a continuous phase modulation system by changing the modulation index. For example, if the modulation index changes between $\frac{1}{4}$ and $\frac{3}{4}$, often specified by $\{1, \frac{3}{4}\}$, then the modulation changes between $\pi/4$ and $\pi/2$. This means that the modulation changes from a $\pi/4$ shift to a $\pi/2$ shift, which improves the detection process by extending the ambiguity of the nodes of the trellis diagram. Therefore the first merge point is twice as far on the multi-h trellis diagram (see Figure 6-11). By extending the ambiguity points further in the trellis diagram, the number of errors that can occur or the number of bit decisions is less.
The multi-h method improves spectral efficiency by providing more data throughput for a given bandwidth. The disadvantage is that the system becomes more complex. In addition, it has constraints that require

\[q \geq M^k, \]

where

- \(q \) = common denominator of modulation index (4 in the example),
- \(M \) = number of phase states (binary in the example),
- \(K \) = number of modulation states (2 in the example).

The example above shows this meets the constraint for a good use of multi-h: \(4 = 2^2 \).

6.8 Turbo and Low-Density Parity Check Codes

Two other FEC codes that are being used in data link communications are turbo codes and low-density parity check (LDPC) codes. Turbo codes were invented in 1993 by Claude Berrou and Alain Glavieux. They use two or more parallel convolutional encoders/decoders. These codes claim that they are approximately 0.5 dB away from Shannon’s limit. They use
parallel-concatenated convolutional codes (PCCCs). The disadvantage of turbo codes is the decoding delay, since iterations take time, and this may affect real-time voice, hard disk storage, and optical transmissions.

Turbo codes use a recursive systematic code (RSC). It is recursive because it uses feedback of the outputs back into the input. It is systematic because one of the outputs is exactly the same as the input. These two properties provide better performance over nonrecursive, nonsystematic codes. The term turbo refers to turbo engines, which use exhaust to force air into the engine to boost combustion, similar to the function of the code, where it provides feedback from the output of the decoder to the input of the decoder.

The transmitted code word structure is comprised of the input bits, parity bits from the first encoder using the input bits, and parity bits from the second encoder using interleaved input bits (see Figure 6-12). The decoders use log-likelihood ratios as integers with reliability estimate numbers of -127 (0) to $+127$ (1). It uses an iterative process using both decoders in parallel.

A technique known as puncturing is also used. This process deletes some bits from the code word according to a puncturing matrix to increase the rate of the code. For example, puncturing can change the rate from $\frac{1}{2}$ to $\frac{2}{3}$ while still using the same decoder for these different rates. However, systematic bits (input bits) in general are not punctured. Puncturing provides a trade-off between code rate and performance.

Low-density parity check codes outperform turbo codes, with claims that the performance is approaching 0.1 dB away from Shannon’s limit.
The advantage of these codes is that the patents have expired so they are free for use. A possible disadvantage is high encoding complexity. These codes work to produce convolutional codes derived from quasi-cyclic block codes of LDPC.

6.9 Theory of Pulse Systems

The easiest way to explain what is happening with a spread spectrum waveform is to look at a simple square wave. A square wave has a 50% duty cycle and is shown in Figure 6-13. This is a time domain representation of a square wave because it shows the amplitude of the signal with respect to time, which can be observed on an oscilloscope. The frequency domain representation of a square wave shows the amplitude (usually in dB) as a function of frequency, as shown in Figure 6-13. The frequency spectrum of a square wave contains a fundamental frequency, both positive and negative, and the harmonics associated with this fundamental frequency. The negative frequencies do not exist; they are there to help in analyzing the signal when it is upconverted. The fundamental frequency is the frequency of the square wave. If the corners of the square wave were smoothed to form a sine wave, it would be the fundamental frequency in the time domain. The harmonics create the sharp corners of the square wave. The sum of all these

![Time Representation of a Square Wave in the time domain](image1)

![Frequency Spectrum of a Square Wave in the frequency domain -Mag Sinx/x](image2)

Figure 6-13 Time and frequency domain representations of a pulsed signal with 50% duty cycle.
frequencies is usually represented by a Fourier series. The Fourier series contains all the frequency components with their associated amplitudes.

In a square wave, even harmonics are suppressed and the amplitudes of the odd harmonics form a sinc function, as shown in Figure 6-13. The inverse of the pulse width is where the nulls of the main lobe are located. For a square wave, the nulls are located right at the second harmonic, which is between the fundamental frequency and the third harmonic. Note that all the other nulls occur at the even harmonics, since the even harmonics are suppressed with a square wave (see Figure 6-13).

If the pulse stream is not a square wave (50% duty cycle), then these frequency components move around in frequency. If the pulse width is unchanged and the duty cycle is changed, then only the frequency components are shifted around and the sinc function is unchanged. Also, the frequency components that are suppressed are different with different amplitude levels. For example, if the duty cycle is changed to 25%, then every other even harmonic (4, 8, 12) is suppressed (see Figure 6-14).

Note that not all the even harmonics are not suppressed as they were for the 50% duty cycle pulse because they are not located in the nulls of the

![Time Representation of a Pulse in the time domain with 25% Duty Cycle](image1)

![Frequency Spectrum of a Pulse in the frequency domain with 25% Duty Cycle –Mag Sinx/x](image2)

Figure 6-14 Time and frequency domain representations of a pulsed signal with 25% duty cycle.
sinc pattern. Also, there are more and more frequencies in the main lobe as the duty cycle gets smaller, and if the pulse width does not change, then the nulls will always be at the same place, at the inverse of the pulse width. If the pulse width changes, then the position of the nulls will change.

6.10 PN Code

To obtain an intuitive feel for what the spectrum of a PN coded signal is doing on a real-time basis, as the code is changing, the pulse widths change (variable number of “1”s in a row) and the duty cycle changes (variable number of “−1”s in a row). Variations in the pulse widths cause the nulls of the sinc function to change (will not be any larger than 1/chip width). In addition, variations in the duty cycle cause the number of frequency components inside the sinc function to change. This results in a more continuous sinc function spectrum in the frequency domain, with the null of the sinc function being 1/chip width (see Figure 6-15).

![Time Waveform of a Spread Spectrum Pulse](image)

![Continuous Frequency Spectrum of a Spread Spectrum Pulse](image)

Figure 6-15 Time and frequency domain representations of a spread spectrum continuous waveform.
6.11 Summary

A simple approach to understanding probability theory and the Gaussian process is provided to allow the designer to better understand the principles of designing and evaluating digital transmission. Quantization and sampling errors in the analysis and design of digital systems were discussed.

The probability of error, probability of detection, and probability of false alarms are the keys in determining the performance of the receiver. These errors are dependent on the received SNR and the type of modulation used. Error detection and correction were discussed and several approaches were examined to mitigate errors. Theory on pulsed systems, showing time and frequency domain plots, provide knowledge and insight into the design and optimization of digital transceivers.

References

Problems

1. Using the fact that the integral of the probability density function is equal to 1, what is the percent chance of getting this problem wrong if the chance of getting it right is 37%?

2. What is the expected value of x if $f_x(x) = 0.4$ when $x = 1$ and $f_x(x) = 0.6$ when $x = 2$? What is the mean?

3. Is the answer in problem 2 closer to 1 or 2, and why?

4. What is the $E[x^2]$ in problem 2?

5. What is the variance in problem 2?

6. What is the standard deviation of problem 2?
7. What is the probability the signal will not fall into a 2σ value with a Gaussian distribution?

8. Given a system with too much quantization error, name a design change that can reduce the error?

9. What is the probability of receiving 20 pulses if the probability of detection is 0.98 for one pulse?

10. What is probability that the error occurs because of one lost pulse in problem 9?

11. What is the difference between probability of error and BER?

12. What are three basic types of error detection? Which is the best?

13. What are the two basic types of error correction?

14. How does interleaving maximize the error correction process?
Multipath

Multipath is a free-space signal transmission path that is different than the desired, or direct, free-space signal transmission path used in communications and radar applications. The amplitude, phase, and angle of arrival of the multipath signal interfere with the amplitude, phase, and angle of arrival of the desired or direct path signal. This interference can create errors in angle of arrival information and in received signal amplitude in data link communications. The amplitude can be larger or smaller depending on if the multipath signals create constructive or destructive interference. Constructive interference is when the desired signal and the multipath signals are more in phase and add amplitude. Destructive interference is when the desired signal and the multipath signals are out of phase and subtract amplitude.

Angle of arrival errors are called glint errors. Amplitude fluctuations are called scintillation or fading errors. Therefore the angle of arrival, the amplitude, and the phase of the multipath signal are all critical parameters to consider when analyzing the effects of multipath signals in digital communication receivers. Frequency diversity and spread spectrum systems contain a degree of immunity from multipath effects since these effects vary with frequency. For example, one frequency component for a given range and angle may have multipath that severely distorts the desired signal, whereas another frequency may have little effect. This is mainly due to the difference in the wavelength of the different frequencies.
7.1 Basic Types of Multipath

Multipath reflections can be separated into two types of reflections, specular and diffuse, and are generally a combination of these. Specular multipath is a coherent reflection, which means that the phase of the reflected path is relatively constant with relation to the phase of the direct path signal. This type of reflection usually causes the greatest distortion of the direct path signal because most of the signal is reflected toward the receiver. Diffuse multipath reflections are noncoherent with respect to the direct path signal. The diffuse multipath causes less distortion than the specular type of multipath because it reflects less energy toward the receiver and usually has a noise-like response due to the random dispersion of the reflection. Both types of multipath can cause distortion to a system, which increases the error of the received signal and reduces coverage according to the link budget. Multipath effects are included as losses in the link budget (see Chapter 1). Specular reflection is analyzed for both a reflection off a smooth surface and a rough surface.

7.2 Specular Reflection on a Smooth Surface

Specular reflections actually occur over an area of the reflecting surface (which is defined as the first Fresnel zone, similar to the Fresnel zones found in optics). Generally the reflecting area is neglected and geometric rays are used. These rays obey the laws of geometrical optics, where the angle of incidence is equal to the angle of reflection, as shown in Figure 7-1.

For a strictly specular reflection (referred to as a smooth reflection), the reflection coefficient ρ_o depends on the grazing angle, the properties of the reflecting surface, and the polarization of the incident radiation. ρ_o assumes a perfectly smooth surface. This reflection coefficient is complex. A smooth reflection has only one path directed toward the receiver, as shown in Figure 7-1.

The magnitude of the “smooth” reflection coefficient ρ_o is plotted in Figure 7-2 as a function of the reflection coefficient and the grazing angle, with plots showing both horizontal and vertical polarization effects of the incident radiation. The graph shows that for vertical polarization near the pseudo-Brewster angle, the reflection coefficient is very small, a phenomenon that is also observed in optics. This phenomenon can be used to minimize multipath reflections. For horizontal polarization, the reflection coefficient is fairly constant, but starts dropping off as the grazing angle approaches 90°. Not only does the magnitude of the reflected radiation change, but the phase of the reflected radiation is also modified. A phase shift of the incident radiation can vary from near 0° to 180°, depending on the
MULTIPATH

• Assumes parallel lines

$d = \arcsin \left(\frac{hr - ht}{R} \right)$

$r = \arcsin \left(\frac{hr + ht}{R + 2ht \sin \theta} \right)$

Figure 7-1 Single ray specular multipath analysis.

Figure 7-2 Reflection coefficient versus grazing angle for different antenna polarizations.
polarization of the incident radiation and the conductivity and dielectric constant of the reflecting surface.

7.3 Specular Reflection on a Rough Surface

Generally the ideal reflecting case must be modified because reflecting surfaces (usually the earth’s surface) are not perfectly smooth. The roughness of the reflecting surface decreases the amplitude of the reflection coefficient by scattering energy in directions other than the direction of the receiving antenna. To account for the loss in received energy, a scattering coefficient, \(\rho_s \), is used to modify the smooth reflection coefficient. The smooth reflection coefficient is multiplied by the scattering coefficient, creating an overall modified reflection coefficient to describe a specular surface reflection on a rough surface. The scattering coefficient, \(\rho_s \), is the root mean square (RMS) value. This coefficient can be defined as a power scattering coefficient:

\[
\bar{\rho}_s^2 = e^{-\left(\frac{4h\sin d}{\lambda} \right)^2}
\]

where
\[
\begin{align*}
\rho_s &= \text{power scattering coefficient or reflection coefficient for a rough specular surface}, \\
h &= \text{RMS height variation (normally distributed)}, \\
d &= \text{grazing angle}, \\
\lambda &= \text{wavelength}.
\end{align*}
\]

The roughness of the reflecting surface modifies the smooth reflection coefficient and produces a noncoherent, diffuse reflection. If the variations are not too great, then a specular analysis is still possible and \(\rho_s \) will be the scattering modifier to the smooth specular coefficient \(\rho_o \). This analysis can be used if the reflecting surface is smooth compared to a wavelength. The criteria that is used to determine if the diffuse multipath can be neglected is known as the Rayleigh criterion, which looks at the ratio of the wavelength of the radiation and the height variation of the surface roughness and compares it to the grazing angle or incident angle. The Rayleigh criterion is defined as follows:

\[
h_d \sin d < \frac{\lambda}{8},
\]

where
\[
\begin{align*}
h_d &= \text{peak variation in the height of the surface}, \\
d &= \text{grazing angle}, \\
\lambda &= \text{wavelength}.
\end{align*}
\]
If the Rayleigh criterion is met, then the multipath is a specular reflection on a rough surface and ρ_o and ρ_s are used to determine the multipath. If the Rayleigh criterion is not met, then the diffuse multipath coefficient ρ_d must be taken into account for complete multipath analysis.

7.4 Diffuse Reflection

Diffuse multipath has noncoherent reflections and is reflected from all or part of an area known as the “glistening surface” (see Figure 7-3). This surface is called a glistening surface because in the optical (visible) equivalent the surface can be seen to sparkle or glisten when diffuse reflections are present. The boundaries of the glistening surface are given by

$$y = \pm \frac{X_1 X_2}{X_1 + X_2} \left(\frac{h_r}{X_1} + \frac{h_t}{X_2} \right) \sqrt{\beta_0^2 - \frac{1}{4} \left(\frac{h_r}{X_1} - \frac{h_t}{X_2} \right)^2}$$

where
- $\beta_0 =$ reflection angle,
- $h_r =$ height of receiver antenna,
- $h_t =$ height of transmitter antenna,
- $X_1 =$ distance from the transmitter antenna base to the point of reflection,
- $X_2 =$ distance from the receiver antenna base to the point of reflection.

$\textbf{Figure 7-3} \text{ Multipath over a glistening surface.}$
Diffuse reflections have random amplitudes and phases with respect to the amplitude and phase of the direct path. The amplitude variations follow a Rayleigh distribution, while the phase variations are uniformly distributed from 0° to 360°. The phase distribution has zero mean (i.e., diffuse multipath appears as a type of noise to the receiver).

For diffuse reflection, a diffuse scattering coefficient is multiplied by ρ_s to obtain the diffuse reflection coefficient. Calculating the diffuse scattering coefficient ρ_d is more tedious than calculating the specular scattering coefficient. The area that scatters the diffuse multipath cannot be neglected, as was done in the specular multipath case. One procedure to determine ρ_d is to break up the glistening area into little squares, each square a reflecting surface, and then calculate a small (δ) diffuse scattering coefficient (see Beckman and Spizzichino). The scattering coefficients are summed up and the mean is calculated, which gives the overall diffuse scattering coefficient ρ_d. This can be converted to a power coefficient as shown below:

$$\rho_d^2 \approx \frac{1}{4\pi \rho_s^2} \int \frac{R^2 dS}{X_1^2 X_2^2} = \frac{1}{2\pi \rho_s^2} \int \frac{R^2 y dX}{(R - X)^2 X^2}$$

where

$R = $ range,

$X = $ ground range coordinates.

This is for a low-angle case. This diffuse scattering coefficient is derived based on the assumption that the reflecting surface is sufficiently rough that there is no specular multipath component present. The roughness factor has been defined as F_d^2 and modifies the diffuse scattering coefficient ρ_d:

$$F_d^2 = 1 - \rho_s^2.$$

A plot of the specular and diffuse scattering coefficients with respect to roughness criteria is shown in Figure 7-4. With a roughness factor greater than 0.12, the reflections become predominantly diffuse. The diffuse reflection coefficient amplitude reaches approximately 0.4, which is 40% of the amplitude of the smooth reflection coefficient, whereas the specular coefficient reaches 1.0, or 100% of the smooth reflection coefficient. Precautions need to be taken when using the plots in Figure 7-4 since ρ_d does not include the roughness factor F_d^2 and may cause significant errors in the analysis of actual values.
Reflection Coefficient

\[\rho_s = \text{specular} \]
\[\rho_d = \text{diffuse} \]

Roughness = \(\frac{h \lambda \sin d}{\lambda} \)

\(h \) = surface variation height
\(d \) = grazing angle
\(\lambda \) = wavelength

Figure 7-4 Reflection coefficient versus roughness factor.

7.5 Curvature of the Earth

For most communications systems other than satellite links, the divergence factor \(D \) caused by the curvature of the earth can be taken as unity. However, if a particular scenario requires the calculation of the divergence factor, it is equal to

\[
D = \lim_{r \to 0} \sqrt{\frac{A_r}{A_f}}
\]

where

- \(A_r \) = area projected due to a round earth,
- \(A_f \) = area projected due to a flat earth.

A diagram showing the different areas that are projected for both a round and flat earth are shown in Figure 7-5. The curvature of the earth...
produces a wider area of reflection, as shown in the figure. The ratio of the areas is used to calculate the divergence factor. Note that for most systems, the area difference is very small and generally can be neglected.

7.6 Pulse Systems (Radar)

Multipath can affect radar systems by interfering with the desired signal. Leading edge tracking can be used to eliminate a large portion of the distortion caused by multipath because the multipath arrives later in time than the direct path. In leading edge tracking, only the first portion of the pulse is processed and the rest of the pulse, which is distorted due to multipath, is ignored. If the grazing angle is very small, then the time of arrival (TOA) for both direct path and multipath signals is about the same. For this case, the angle error between the direct path and multipath is very small. If the multipath is diffuse, then the multipath signal will appear as an increase in the noise floor of the direct path and a slight angle variation will occur due to the multipath mean value coming at a slightly different angle. If the multipath is specular, then the multipath signal will increase or decrease the actual amplitude of the direct path signal and also create a slight angle error. If one or more of the antennas are moving, then the specular reflection will also be a changing variable with respect to the phase of the multipath signal and the direct path signal, thus producing a changing amplitude at the receiver. As the grazing angle increases, the angle error also increases. However, the TOA increases, which means that leading edge tracking becomes more effective with larger grazing angles.
One other consideration is that the pulse repetition frequency (PRF) of the radar must be low enough so that the time delay of the multipath is shorter than the time between the pulses transmitted. This prevents the multipath return from interfering with the next transmitted pulse.

Another consideration is the scenario where a surface such as a building or other smooth surface gives rise to specular reflection with a high reflection coefficient where the multipath could become fairly large. For a stationary situation, this is a real problem. However, if one of the antennas is moving, then the multipath is hindered, depending on the velocity of the antenna and the area of the reflector, for only the time the angle of reflection is right. The processor for the receiver could do an averaging of the signal over time and eliminate some of these problems.

7.7 Vector Analysis Approach

Different approaches can be taken to calculate the resultant effects of the reflected energy (see Munjal). One method is vector addition. The reference vector is the direct path vector with a given amplitude and a zero reference angle. The coherent reflection vector, C, for specular reflection is calculated below with the phase referenced to the direct path vector:

$$C = D \rho_o \rho_s e^{j2\pi \frac{dR}{\lambda}}$$

where

- $D =$ divergence factor,
- $\rho_o =$ specular reflection coefficient,
- $\rho_s =$ scattering coefficient,
- $dR =$ path length difference,
- $\lambda =$ wavelength.

Determining an accurate vector for ρ_s is difficult. Note that ρ_s represents an average amplitude distributed value that is a function of the distribution of the surface.

The noncoherent vector, I, for diffuse reflection is calculated as

$$I = \frac{D \rho_o \rho_d}{\sqrt{2}} (I_1 + jI_2)e^{j2\pi \frac{dR}{\lambda}}$$

where

- $dR =$ path length difference,
- $D =$ divergence factor,
- $I_1 + I_2 =$ independent zero mean unit variance normalized Gaussian processes.
The vectors \(C \) and \(I \) are summed with the reference phasor to produce the resultant phasor, as shown in Figure 7-6.

Designing an accurate model for \(\rho_d \) is difficult. Observed test data from known systems can aid in the selection and verification of the scattering coefficients \(\rho_s \) and \(\rho_d \).

- **Vector Analysis**

 ![Diagram of vector analysis](image)

- **Power Summation**

 \[P_t = P_{\text{dir}} + P_{\text{spec}} + P_{\text{diff}} \]

 Figure 7-6 Different approaches to analyzing multipath.

7.8 Power Summation Approach

Another approach for determining the error caused by reflections is to sum the powers of each type of reflection with the direct power:

\[P_t = P_{\text{dir}} + P_{\text{spec}} + P_{\text{diff}}, \]

where

- \(P_{\text{dir}} \) = direct power,
- \(P_{\text{spec}} \) = mean specular power,
- \(P_{\text{diff}} \) = mean diffuse power.

This approach uses power addition instead of vector addition. Mean power reflection coefficients are used. The resultant mean specular power is

\[P_{\text{diff}} = P_D \rho_s^2 \rho_s^2 \]
where

\[P_d = \text{power applied to the surface}. \]

The mean diffuse power is equal to

\[P_{\text{diff}} = \frac{P_D}{H_2} \rho_0^2 \rho_d^2 \]

A divergence factor can be included to account for the curvature of the earth.

7.9 Multipath Mitigation Techniques

Some of the techniques used to reduce and mitigate multipath are the following:

- Leading edge tracking for radars. The multipath is delayed with respect to the direct path, therefore the leading edge of the waveform contains the signal and not the multipath. This assumes a low PRF to prevent long multipath from affecting the next radar pulse. However, the longer the multipath, the less the signal amplitude, which will interfere less with the desired signal.

- Movement changes the specular multipath to provide an average error. Multipath is position sensitive, so movement will change the multipath nulls.

- Antenna design to prevent low-angle multipath. This technique is used for GPS, where the desire is to have the mask angle or angle to the earth low but at the same time prevent multipath signals that are reflecting off of the earth.

- Spread spectrum. Nulls caused by multipath are frequency dependent, so with a spread spectrum system spread across a wide band of frequencies, the multipath only affects a portion of the spectrum.

- Antenna diversity. Since multipath is dependent on position, antennas can be located at different positions so that as one antenna is in a multipath null, the other antenna is not.

7.9.1 Antenna Diversity

Antenna diversity is a technique to help mitigate multipath. It requires the data link to have two or more antennas at the receiver. The signals in
these different paths are selected to provide the best signal that is not interfered with by multipath. The theory is that when one antenna is in a multipath null, the other is not. This works very well with only two antennas with the antennas separated a short distance to prevent both antennas from being in the null (see Figure 7-7). This technique is used in many applications in wireless communications.

![Antenna diversity to help mitigate multipath.](image)

Figure 7-7 Antenna diversity to help mitigate multipath.

7.10 Summary

Multipath affects the desired signal by distorting both the phase and the amplitude. This can result in a lost signal or a distortion in the TOA of the desired signal. Multipath is divided into two categories: specular and diffuse. Specular multipath generally affects the system the most, resulting in more errors. Diffuse multipath is more noise-like and is generally much lower in power. The Rayleigh criterion is used to determine if the diffuse multipath needs to be included in the analysis. The curvature of the earth can affect the analysis for very long-distance multipath. One of the ways to reduce the effects of multipath is to use leading edge tracking so that most of the multipath is ignored. Some approaches for determining multipath effects include vector analysis and power summation. Several methods of multipath mitigation were discussed, including using multiple antennas for antenna diversity.

References

Problems

1. What is the difference between glint errors and scintillation errors?

2. Which type of multipath affects the solution the most? Why?

3. What is the effect of multipath on a incoming signal if the signal is vertically polarized at the pseudo-Brewster angle?

4. What is the effect of multipath on a incoming signal if the signal is horizontally polarized at the pseudo-Brewster angle?

5. What is the criteria for determining which type of multipath is present?

6. According to the Rayleigh criterion, what is the minimum frequency at which the multipath will still be considered specular for a peak height variation of 10 m and a grazing angle of 10°?

7. What is the divergence factor and how does it affect the multipath analysis?

8. How do most radars minimize multipath effects on the radar pulses?

9. Graphically show the resultant vector for a reference signal vector with a magnitude of 3 at an angle of 10° and the smooth specular multipath signal vector with a reflection coefficient of 0.5 at an angle of 180° with respect to the signal vector?

10. What is the main difference between the vector summation approach to multipath analysis and the power summation approach? How does this approach affect the reflection coefficient?

11. How does antenna diversity help mitigate multipath?
The type of jammer that will prevent communications and the means to eliminate or reduce the effects on the reception of a desired signal are crucial to most systems. The receiver is open to reception of not only the desired signal, but all interfering signals that are within the receiver’s bandwidth, which can prevent the receiver from processing the desired signal properly (see Figure 8-1).

Figure 8-1 The receiver accepts both the desired signal and jammers.

This chapter discusses in detail three solutions to reduce the effects of jammers: a method to protect the system against pulse or burst jammers, an adaptive filter to reduce narrowband jammers such a continuous
wave (CW), and a jammer reduction technique called a Gram-Schmidt orthogonalizer (GSO). Other techniques to reduce the effects of jammers are antenna siting, which mounts the antenna away from structures that cause reflections and potential jammers, and the actual antenna design to prevent potential jammers from interfering with the desired signal.

In addition, in some systems, the ability for another receiver to detect the transmitted signal is important. These types of receivers are known as intercept receivers. A discussion is presented on the various types of intercept receivers, and the advantages and disadvantages of each are evaluated.

8.1 Burst Jammer

One of the best jammers for direct sequence spread spectrum modulation is a burst jammer. A burst jammer is generally a high-amplitude narrowband signal relative to the desired signal and is present for a short period of time. Typical bursts range from a 0 dB to 40 dB signal-to-jammer ratio (SJR), with a duration of 0.5 μs to 1000 μs. An example of a burst jammer is shown in Figure 8-2.

![Figure 8-2 An example of a burst jammer.](image)

The burst jammer affects the receiver as follows:

- The high amplitude of the burst saturates the automatic gain control (AGC) amplifiers, detectors, and the processor. The information is lost during the burst time and also during the recovery time of each of the devices.
The burst can capture the AGC. With the burst present, the AGC voltage slowly increases, which reduces the gain of the amplifier. When the burst is gone, the amplifier gain is small and the signal is lost until the AGC has time to respond, at which time the burst comes on again.

One method of reducing the effects of a burst jammer is to use a burst clamp. A burst clamp detects the increase in power at radio frequency (RF) and prevents the burst from entering the receiver. To determine the threshold for the power detector, the previous AGC voltage is used. The process gain and the bit error rate (BER) are also factors in determining the threshold desired. The duration thresholds are determined by the noise spikes for a minimum and the expected changes in signal amplitude for a maximum. The burst clamp performs four functions:

- It detects the power level to determine the presence of a burst.
- It switches out the input signal to the AGC amplifier.
- It holds the AGC voltage to the previous value before the burst occurred.
- It tells the decoder that a burst is present.

A detector log amplifier is used to detect the power level of the burst (see Figure 8-3). The log amplifier compensates for the detector and gives a linear response of power in dB to volts out. The detected output is compared to the AGC voltage plus a threshold voltage to determine whether or not a burst is present. If a burst is present, the counter in the time-out circuit is enabled. This switches out both the intermediate frequency (IF) path and the AGC path, prevents the burst from continuing through the circuit, and holds the AGC voltage at the level set before the burst occurred. The counter time-out is set for the longest expected burst and then resets the flip-flop that closes the switches to allow the AGC voltage to build up again. This prevents the burst from locking up the AGC if there is a large change in signal level or when the transmitter is turned on. The speed of the circuitry is important so that the receiver will respond to quick bursts and not allow the AGC voltage to change due to a burst. The response of the IF amplifier is slow enough that the detection circuitry has time to respond. Some considerations when designing the circuitry are

- Linearizing and matching over temperature.
- Response time of the burst clamp.
- False triggering on noise.
- Dynamic range of the detector.
- Detector amplitude dependent on frequency.
- Burst clamp saturation.
- Holding AGC voltage for long burst duration.
Counter Set for longest expected burst
Counter resets FF after time out to close the switches again
SR FF goes high for one count cycle to allow capacitor to charge up.

Figure 8-3 Burst clamp used for burst jammers.

The response time needs to be fast enough so that the burst is not in the system longer than the error correction used in the system. The instantaneous dynamic range (IDR) of the system (amplitude) affects the soft decision (various thresholds are used in soft decisions), which can affect the BER regardless of the process gain.

Another method for making a burst clamp is by using a slope detector, as shown in Figure 8-4. This design uses a differentiator to detect the presence of a burst. The window comparator looks at both the rising slope and falling slope of the burst. The rest of the circuitry is basically the same as before. The advantages of this type of clamp are

- The threshold is the same for all signal levels.
- No need for curve matching or linearizing.
- Insensitive to slow changes in noise level and signal level.

The disadvantages are

- Hard to detect the slope (detection error).
- Will not detect slow rise time bursts.
Figure 8-4 *Slope detection burst clamp.*

- Difficult to select the proper time constant.
- Slower detection process.

The placement of the burst clamp depends on the type of receiver used in the system. Most systems use a burst clamp at the IF and possibly one at RF. If the system has an AGC at the RF, then a burst clamp would be needed there also. The receiver can have either one detector at RF and use the sum of the RF and IF AGC voltages for the threshold, or it can use a detector at both places in the system. The latter would increase the sensitivity of the overall burst detection, depending on the receiver. Most detectors have a sensitivity of around -45 dBm.

8.2 Adaptive Filter

An adaptive notch filter that minimizes the effect of a narrowband jammer on data links can improve the transceiver. Most adaptive tapped delay line filters function only in baseband systems with bandwidths on the order of a few megahertz. In order to operate this filter over a wide bandwidth and at a high frequency, several problems must be overcome. Phase delays must be compensated for and the quadrature channels must be balanced.
Therefore the actual performance of the filter is limited by the ability to make accurate phase delay measurements at these high frequencies.

In situations where the desired signal is broadband, there is a requirement to design a filtering system that can reduce narrowband jamming signals across a very wide band at a high center frequency without an extensive amount of hardware. There are several methods that reduce the effect of the narrowband signals across a very large band.

One such method is the use of spread spectrum techniques to obtain a process gain, which improves the SJR. Process gain is the ratio of the spread bandwidth to the rate of information sent. However, there are limitations on the usable bandwidth and on how slow the information can be sent in a given system. Coding techniques and interleaving can improve the system and reduce the effect of the narrowband jammer. However, the amount and complexity of the hardware required to achieve the necessary reduction limits the amount of coding that is practical in a system. If the bandwidth is already wide, spreading the signal may be impractical and the spread spectrum techniques will be of no value.

Passive notch filters placed in-line of the receiver can be used to reduce the unwanted signals, but with a large degradation in the wideband signal at the location of the notches. Also, prior knowledge of the frequency of each interferer is required and a notch for each undesired signal needs to be implemented. Since these notch filters are placed in series with the rest of the system, the overall group delay of a communication link will be altered.

Adaptive filters have been used for noise cancellation using a tapped delay line approach. The noise cancellation filter uses a separate reference input for the noise and uses the narrowband output for the desired signal. In this application, the desired signal is the wideband output and the reference input and the signal input are the same. The reference signal goes through a decorrelation delay which decorrelates the wideband component, but the narrowband signal, because of its periodicity, remains correlated. When an adaptive filter is configured in this manner, it is called an adaptive line enhancer (ALE).

Adaptive filters, configured as ALEs, have been used to reduce unwanted signals, however, they have been limited to relatively narrowband systems and at low frequencies. Adaptive filters can be used in broadband systems with a high carrier frequency, provided certain modifications are made to the system.

8.3 Digital Filter Intuitive Analysis

A finite impulse response (FIR) digital filter is shown in Figure 8-5. The signal enters the tapped delay line and each output of the taps is multiplied by a weight value and then they are all summed together. One way to look
at this is each tap is moving up and down according to the input signal and
time. Therefore the sum is equal to a point on the sine wave in time. At
another point in time, the signal levels are different in the taps. However,
the multiplication and resulting sum equals another point on the sine wave.
This continues to happen until the output is the sine wave or the input is a
sine wave with a delay. Note that other frequencies will not add up correctly
with the given coefficients and will be attenuated.

An adaptive filter uses feedback to adjust the weights to the correct
value for the input sine wave compared to the random signal, and in ALE,
the sine wave is subtracted from the input signal, resulting in just the
wideband signal output. Note that there is a decorrelation delay in the
ALE that delays the wideband signal in such a way that the autocorre-
lation of the wideband signal is small with a delayed version of itself. The
narrowband signal has high autocorrelation with a delayed version of it-
self. This technique is used to reduce narrowband jamming in a wideband
spread spectrum system. The wideband signal is not correlated with the
delayed wideband signal, especially for long pseudo-noise (PN) codes. If a
long PN code is used, then a delay greater than one chip of the code is not
correlated. The longer the code, the less correlation for a delay greater than
a chip (see Figure 8-6). Note that the correlator multiplies the code with the

\[
\begin{array}{ccccccccc}
+1 & +1 & +1 & +1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & +1 & +1 & +1 & +1 & +1 \\
+1 & +1 & +1 & +1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & +1 & +1 & +1 & +1 & +1 \\
\end{array}
\]

\[1 + -1 + 1 + -1 + 1 + 1 + -1 + -1 + 1 + 1 + 1 + -1 + 1 = 0\]

Figure 8-5 FIR matched filter.

Figure 8-6 Correlation of a wideband PN code with a 1 chip delay.
delayed version of the code and the results are integrated. The integration value approaches zero as the code becomes longer.

8.4 Basic Adaptive Filter

A block diagram of a basic adaptive filter configured as an ALE is shown in Figure 8-7. The wideband input, d_k, consists of a narrowband signal s_k plus a wideband signal or noise n_k. The composite signal is split and one channel is fed to a decorrelation delay indicated by Z^{-D}, which decorrelates the wideband signal or noise. The other goes to a summing junction. The output of the decorrelation delay is delivered to a chain of delays and the output of each delay, $X_k(i)$, is multiplied by its respective weight values, $W_k(n)$. The weights are drawn with arrows to indicate that they are varied in accordance to the error feedback, e_k. The outputs of all the weights are summed together and produce the estimated narrowband spectral line, y_k. This narrowband signal is subtracted from the wideband plus narrowband input d_k to produce the desired wideband signal output, which is also the error e_k. The name ALE indicates that the desired output is the narrowband signal y_k. However, for use in narrowband signal suppression, the wideband or error signal e_k is the desired output.

![Figure 8-7 Basic adaptive filter configured as an ALE.](image)

Adaptive line enhancers are different from fixed digital filters because they can adjust their own impulse response. They have the ability to
change their own weight coefficients automatically using error feedback, with no a priori knowledge of the signal or noise. Because of this ability, the ALE is a prime choice in jammer suppression applications where the exact frequency is unknown. The ALE generates and subtracts out the narrowband interferer, leaving little distortion to the wideband signal. Also, one ALE can reduce more than one narrowband interference signal at a time in a given bandwidth. The adaptive filter converges on the superposition of the multiple narrowband jammers. The adaptive filter scheme has the ability to adapt in frequency and amplitude to the interferer in a specified bandwidth, so exact knowledge of the interferer is not necessary. If the interferer changes in frequency in the given band, the filter will automatically track the change and reduce the narrowband signal.

8.5 Least Mean Square Algorithm

The adaptive filter works on the principle of minimizing the mean square error (MSE), $E[e_k^2]$ using the least mean square (LMS) algorithm (see Haykin) (see Figure 8-8). The input to the filter is

$$d_k = s_k + n_k \text{ (scalar)}.$$

where

$s_k = \text{narrowband signal (scalar)}$,

$n_k = \text{noise or wideband signal (scalar)}$.

Figure 8-8 Adaptive filter using LMS algorithm.
The ALE is designed to minimize the MSE:

\[
\text{MSE} = E[e_k^2] = E[(d_k - W_k^T X_k)^2] = E[d_k^2 - 2d_k W_k^T X_k + (W_k^T X_k)^2]
\]

\[
= E[d_k^2] - 2E[d_k X_k^T]W_k + E[W_k^T X_k X_k^T W_k].
\]

where

\[
e_k = \text{error signal (scalar)},
W_k^T = \text{weight values transposed (vector)},
X_k = \text{the tap values (vector)}.
\]

When substituting the autocorrelation and cross-correlation functions, the definitions give

\[
\text{MSE} = E[d_k^2] - 2r_{xd}W_k^T + W_k R_{xx} W_k^T,
\]

where

\[
R_{xx} = E[X_k X_k^T] = \text{autocorrelation matrix},
\]
\[
r_{xd} = E[d_k X_k^T] = \text{cross-correlation matrix},
X_k^T W_k = X_k W_k^T.
\]

To minimize the MSE, the gradient, \(\nabla_w \), is found and set equal to zero:

\[
\nabla_w E[e_k^2] = 2R_{xx} W_k - 2r_{xd} = 0.
\]

Solving for \(W \), which is the optimal weight value, gives

\[
W_{opt} = R_{xx}^{-1} r_{xd}.
\]

The weight equation for the next weight value is

\[
W_{k+1} = W_k - \mu \nabla_w E[e_k^2].
\]

In the LMS algorithm, \(e_k^2 \) itself is the estimate of the MSE. Because the input signal is assumed to be ergodic, the expected value of the squared error can be estimated by a time average. The weight equation then becomes

\[
W_{k+1} = W_k - \mu \nabla_w (e_k^2) = W_k + 2 \mu e_k X_k.
\]

This is known as the LMS algorithm and is the method that is used to update the weights or the filter response. The new weight value, \(W_{k+1} \), is produced by summing the previous weight value to the product of the error \(e_k \), times the tap value \(X_k \), times a scale factor \(\mu \). The \(\mu \) value determines
the convergence rate and stability of the filter. It has been shown that under the assumption of ergodicity, the weights converge to the optimal solution W_{opt}.

8.6 Digital/Analog ALE

In digital adaptive filters, it is assumed that the time for the error signal to be generated and processed to update the weight values is less than a clock cycle delay of the digital filter clock. However, since part of the feedback loop is analog, delay compensation is required. A quadrature method is used in the frequency conversion processes to allow ease of tuning across a very wide band of operation. This also provides a wider instantaneous bandwidth.

Unless the signal can be digitized at the RF, a digital/analog combination needs to be implemented. When ALEs are used at high frequencies, there must be a downconversion of the RF signal before it can be processed and digitized by the digital filter. This is done using a local oscillator (LO) and a mixer to downconvert the signal to baseband for processing by the digital filter, shown in Figure 8-9.

![Figure 8-9 Analog-to-digital adaptive filter.](image)

A band-pass filter provides a coarse selection of the band for processing. The actual processing bandwidth of the signal is limited to the clock frequency of the digital filter due to the Nyquist criteria to prevent aliasing. After the tone is generated by the digital filter, it is upconverted, using a mixer and the same LO, to the RF. The signal is fed through a band-pass filter to eliminate the unwanted sideband produced in the upconversion.
process and is then subtracted from the composite signal. The final output is split and used for the error feedback signal, which is downconverted in the same manner as the reference signal.

Large bandwidths can be achieved by using a synthesizer to vary the LO frequency and select a band where narrowband interference is a problem. This would not produce a large instantaneous bandwidth, but it would allow control over a large band of frequencies with relatively little hardware. However, either the sum term or the difference term needs to be filtered to process the signal correctly. One way to accomplish this is to use tunable filters, as shown in Figure 8-10.

The left part of the figure shows the standard conversion without filters. When using an LO to downconvert the signal, this process generates both the sum and difference terms. Therefore the IF spectrum starts out with both sum and difference bands: band 1 is defined as the difference frequency band and band 2 is defined as the sum frequency band. Without filtering, the second downconversion process places both bands at baseband, folded over on top of each other. They are passed through the adaptive filter (AF) and upconverted using an LO. The upconversion process generates the sum and difference bands, which contain both band 1 and band 2 (see Figure 8-10).

With the tunable filters, both sum and difference terms are generated in the downconversion process; however, for this case, the unwanted difference band (band 1) is filtered out. Therefore the second downconversion only has band 2 at the baseband. This sum band (band 2) is fed through the adaptive filter process and upconverted using an LO. The upconversion generates the sum and difference bands, which contain only band 2 (see Figure 8-10). When this composite signal is subtracted from the incoming IF spectrum at the top of the figure, the lower band has the results of the subtraction of band 1 and band 2, but the important point is that the upper band contains no frequency because band 2 is subtracted from band 2, therefore band 2 is eliminated in that spectrum (see Figure 8-10).

A quadrature up-/downconversion scheme can also be used to retrieve the desired signal, as shown in Figure 8-11. This configuration allows the LO to be positioned in the center of the band of interest and eliminates the need for tunable filters. The filter is similar to the system shown in Figure 8-9, except that in this configuration, two digital filters and two channels in quadrature are required. A wide band-pass filter can be used in the IF section to select the entire band that the adaptive filter will tune.
across. The LO or synthesizer selects the band of interest, as shown in Figure 8-11. The I and Q signals are low-pass filtered. Both sidebands are downconverted to baseband with an in-phase signal from the oscillator for the I channel and a quadrature-phase signal from the oscillator for the Q channel. This method allows twice the processing bandwidth with a given
If after Subtracting From IF input
Both Band 1 and Band 2 signals are cancelled out

Figure 8-11 Quadrature methods eliminate unwanted sidebands.
clock frequency because it utilizes both sidebands in the process. There is a
digital filter for both I and Q channels which generates the respective tones.
During the upconversion of the digital filter outputs, each channel produces
both bands on each side of the carrier. However, the phase relationship of the
bands provides cancellation of the unwanted sidebands when the signals
are summed together, so that only the desired sidebands are generated.
These desired bands are subtracted from the input IF spectrum and both
bands are eliminated (see Figure 8-11).

This behaves the same as a quadrature transmitter/receiver combina-
tion for sending two different signals and receiving them. Two signals are
quadrature downconverted with an in-phase (I channel) and a 90° phase
shift (Q channel) to give

\[
\begin{align*}
I \text{ channel} & = \cos(\omega_1 t) + \cos(\omega_2 t) \\
Q \text{ channel} & = \cos (\omega_1 t - 90) + \cos (\omega_2 t - 90),
\end{align*}
\]

where

\[
\begin{align*}
\omega_1 & = \text{a frequency located in band 1}, \\
\omega_2 & = \text{a frequency located in band 2}.
\end{align*}
\]

The two digital filters generate these signals and deliver them to the
upconversion process. The same LO is used for both the up- and downcon-
version. The in-phase LO is mixed with the I channel and the 90° phase-
shifted LO is mixed with the Q channel. The results are as follows, which
include the sum and difference terms:

\[
\begin{align*}
I \text{ channel} & = \cos(\omega_0 + \omega_1) t + \cos(\omega_0 - \omega_1) t + \cos(\omega_0 + \omega_2) t + \cos(\omega_0 - \omega_2) t \\
Q \text{ channel} & = \cos(\omega_0 t - 90 + \omega_1 t - 90) + \cos(\omega_0 t - 90 - \omega_1 t + 90) \\
& \quad + \cos(\omega_0 t - 90 + \omega_2 t - 90) + \cos(\omega_0 t - 90 - \omega_2 t + 90) \\
& = \cos[(\omega_0 + \omega_1) t - 180] + \cos(\omega_0 - \omega_1) t + \cos[(\omega_0 + \omega_2) t - 180] \\
& \quad + \cos(\omega_0 - \omega_2) t.
\end{align*}
\]

Amplitudes have been neglected to show phase response only. When
summed together the net result is

\[
2 \cos(\omega_0 - \omega_1) t + 2 \cos(\omega_0 - \omega_2) t.
\]

The unwanted sidebands are eliminated because of the net 180° phase
shift, as shown in Figure 8-10. If the desired frequency occurred on the high
side of the LO, there would have been a sign change in the solution above.
Since the unwanted sidebands are eliminated because of the quadrature
scheme, tunable filters are no longer required for the upconversion process.
Another problem to overcome in this implementation is LO bleed-through when using a nonideal mixer. LO bleed-through is the amount of LO signal appearing on the output of a mixer due to an imbalance of a double-balanced mixer. Since the idea is to eliminate jamming signals in the passband, the LO bleed-through will appear as another jamming signal, which is summed with the original signal. Designing a well-balanced mixer will help the problem, but there is a limit to how well this can be done. One way to reduce LO bleed-through is to couple the LO and phase shift the coupled signal so it is 180° out of phase with the LO bleed-through and exactly the same amplitude, then sum the coupled signal with the composite signal, thus reducing the unwanted LO signal. However, since the synthesizer is changing in frequency and the group delay for the LO bleed-through is not constant, this becomes very difficult to accomplish. An alternative is to use an IF with a fixed LO to upconvert from baseband to the IF and then use the synthesizer to mix up to the desired frequency. Thus the mixers at the lower frequency band provide better LO isolation, which in turn greatly reduces the fixed LO bleed-through. Further, the synthesizer bleed-through is out of band and can be easily filtered.

8.7 Wideband ALE Jammer Suppressor Filter

A wideband ALE jammer suppressor filter is shown in Figure 8-12. The adaptive filter is connected in parallel with the communication system and the only components in line with the system are three couplers and one amplifier. The group delay through the amplifier is constant across the band of interest, with a deviation of less than 100 psec. The amplifier is placed in the system to isolate the reference channel from the narrowband channel. This prevents the narrowband signal from feeding back into the reference channel.

The wideband high-frequency composite signal is split using a −10 dB coupler, amplified, and downconverted to an IF using an adjustable synthesizer. This provides the reference signal for the digital filter. The signal is filtered, amplified, and quadrature downconverted to baseband, where the quadrature signals are filtered and amplified and provide the reference signals to the digital filters. Elliptic low-pass filters are used to achieve fast roll-offs and relatively flat group delay in the passband. The digital filters produce the estimated narrowband signals. The outputs of the digital filters are low-pass filtered, amplified, and quadrature upconverted to the IF band and summed together to eliminate the unwanted sidebands. The signal is filtered and upconverted by the synthesizer to the desired frequency and then filtered, amplified, and subtracted from the composite signal to eliminate the narrowband signal. The output provides both the desired wideband signal and the error. This signal is split and the in-phase error
Wideband High Frequency Composite SIGNAL

is downconverted in two stages to baseband to update the filter weights, as shown in Figure 8-12.

8.8 Digital Circuitry

The digital filter digitizes the reference input using analog-to-digital converters (ADCs) and feeds this signal through a decorrelation delay. This decorrelates the wideband signal and allows the narrowband signal, because of its periodicity, to remain correlated. The delayed signal is fed to a tapped delay line containing 16 different time-delayed signals or taps that are multiplied by the error feedback and then accumulated to update the weight values. The analog error signal is single-bit quantized and scaled by adjusting the \(\mu \) value. The \(\mu \) value determines the filter's sensitivity to the error feedback. The 16 taps are then multiplied by these new weights.
values and converted to analog signals, where they are summed together to form the predicted narrowband output. A selectable delay was incorporated in the design to provide adjustment for the time delay compensation. This was necessary because of the delay through the digital and analog portions of the filter. When the filter generates the predicted narrowband signal for cancellation, the error produced needs to update the portion of the signal that caused the error. If there is delay in this path, then the error will be updating a different portion of the signal than the part that generated the error. Since the analog portion produces delay that is not quantized with regards to a certain number of clock cycles, a variable delay was designed to select small increments of a clock cycle. This allows for better resolution in selecting the correct compensation delay. A rotary switch, mounted on the board, is provided for adjusting the delay for each digital filter.

8.9 Simulation

A limited simulation of the ALE system was performed due to the complexity and large number of variables contained in the ALE system definition. Since simulation time is dependent on the sample rate of the computer clock, a baseband representation was used. The amount of computer time to do the simulation at high frequencies is impractical. Existing models were used to form the desired circuit. The frequency is swept across a 30 MHz band and the output power is measured and displayed. The results are shown in Figure 8-13, which shows the cancellation across the

![Figure 8-13 ALE simulation.](image)

Figure 8-13 ALE simulation.
instantaneous bandwidth. The filter is shown to be unstable at the filter edges because of the phase distortion and aliasing effects. The spikes at DC are a result of only using a 16-tap filter. The low-frequency components cannot be resolved in the tap delay line. The cancellation achieved in the simulation is greater than 40 dB, except around DC.

8.10 Results

The adaptive filter cancellation bandwidth is similar to the results obtained in the simulation (see Figure 8-14). This shows the response of the filter as a CW tone is swept across the selected band. The bandwidth is less than the simulation in order to suppress the phase distortion at the band edge. The center of the band is the response of the filter at DC. Since the ALE is AC-coupled in the hardware, it cannot respond to DC or low frequencies, which results in no cancellation of the signal. This differs from the simulation, because the simulation is DC-coupled. The amount of cancellation across the band is approximately 10 dB, with up to 30 dB at certain frequencies. This can be compared to the 40 dB cancellation across the band achieved in the simulation.

Quadrature imbalance, which is difficult to measure at high frequencies using frequency conversion processes, is a major factor in the amount of suppression of the narrowband tone. Thus the quadrature balance was estimated and the hardware tuned to achieve maximum performance. The synthesizer can be tuned to select a specified frequency to achieve maximum cancellation of that frequency across a given bandwidth. The amount of cancellation is dependent on many factors, such as I-Q balance for both phase and amplitude, phase linearity across the band, and stability and noise in the system.

The cancellation for a single interferer is shown in Figure 8-15. The response shows a single interferer with and without the ALE in the system. The single tone is suppressed by approximately 20 dB. ALEs can suppress more than one interferer at a time, as shown in Figure 8-16. Generally there is degradation in performance in the amount of suppression with respect to the number of interferers. Also, more tones produce more spurious responses in the mixing processes in the system.

8.11 Amplitude and Phase Suppression Results

The main criteria for ensuring that cancellation methods are realized are replication of the waveform needs to be exactly equal in amplitude and exactly 180° out of phase. This provides perfect cancellation. If there
Figure 8.14 Results of filter cancellation bandwidth.
Figure 8-15 Cancellation for a single interferer.
is an error in the amplitude or an error in the phase, this will result in a nonperfect cancellation of the waveform. The cancellation performance degrades when the amplitude is not exact, as shown in Figure 8-17. In addition, if the phase of the cancellation waveform is not exactly 180°, the cancellation performance degrades, as shown in Figure 8-18.

<table>
<thead>
<tr>
<th>Amplitude (B = 1)</th>
<th>Suppression (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.005</td>
<td>52.1</td>
</tr>
<tr>
<td>1.01</td>
<td>46.1</td>
</tr>
<tr>
<td>1.02</td>
<td>40.1</td>
</tr>
<tr>
<td>1.04</td>
<td>34.2</td>
</tr>
<tr>
<td>1.06</td>
<td>30.7</td>
</tr>
<tr>
<td>1.08</td>
<td>28.3</td>
</tr>
<tr>
<td>1.10</td>
<td>26.4</td>
</tr>
<tr>
<td>1.12</td>
<td>24.9</td>
</tr>
<tr>
<td>1.14</td>
<td>23.7</td>
</tr>
<tr>
<td>1.16</td>
<td>22.6</td>
</tr>
<tr>
<td>1.18</td>
<td>21.7</td>
</tr>
<tr>
<td>1.20</td>
<td>20.8</td>
</tr>
<tr>
<td>1.22</td>
<td>20.1</td>
</tr>
<tr>
<td>1.24</td>
<td>19.4</td>
</tr>
<tr>
<td>1.26</td>
<td>18.8</td>
</tr>
<tr>
<td>1.28</td>
<td>18.2</td>
</tr>
<tr>
<td>1.30</td>
<td>17.7</td>
</tr>
</tbody>
</table>

Figure 8-17 Jammer cancellation performance with amplitude variations.

<table>
<thead>
<tr>
<th>Error °</th>
<th>Suppression (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>61.2</td>
</tr>
<tr>
<td>0.5</td>
<td>47.2</td>
</tr>
<tr>
<td>1.0</td>
<td>41.2</td>
</tr>
<tr>
<td>2.0</td>
<td>35.2</td>
</tr>
<tr>
<td>3.0</td>
<td>31.6</td>
</tr>
<tr>
<td>4.0</td>
<td>29.1</td>
</tr>
<tr>
<td>5.0</td>
<td>27.2</td>
</tr>
<tr>
<td>6.0</td>
<td>25.6</td>
</tr>
<tr>
<td>7.0</td>
<td>24.3</td>
</tr>
<tr>
<td>8.0</td>
<td>23.1</td>
</tr>
<tr>
<td>9.0</td>
<td>22.1</td>
</tr>
<tr>
<td>10.0</td>
<td>21.2</td>
</tr>
<tr>
<td>11.0</td>
<td>20.3</td>
</tr>
<tr>
<td>12.0</td>
<td>19.6</td>
</tr>
<tr>
<td>13.0</td>
<td>18.9</td>
</tr>
<tr>
<td>14.0</td>
<td>18.2</td>
</tr>
<tr>
<td>15.0</td>
<td>17.6</td>
</tr>
</tbody>
</table>

Figure 8-18 Jammer cancellation performance with phase variations.
Both these sources of errors need to be considered when analyzing the amount of cancellation that can be obtained. For analog systems, these parameters are very difficult to maintain over temperature, hardware variations, and vibrations. Digital systems are much better to use for cancellation, and a higher cancellation performance can be achieved. The sooner a system can digitize the signal and perform these types of functions in the digital domain, the better the performance that can generally be realized.

8.12 Gram-Schmidt Orthogonalizer

Signals on the x- and y-axis are by definition orthogonal, and in this case 90° out of phase (see Figure 8-19). All signals can be represented by the sum of weighted orthonormal functions or the magnitudes of orthonormal functions. Orthonormal functions are normalized vectors with a magnitude of one. For example, if a signal $S_1(t)$ is placed on the X_1 axis, then its value is the orthonormal function times the magnitude a. If another signal $S_2(t)$ is somewhere between the X_1 axis and the X_2 axis, then it is the sum of the magnitude b of $X_1(t)$ and the magnitude c of $X_2(t)$, as shown below and in Figure 8-19:

$$S_1(t) = aX_1(t)$$
$$S_2(t) = bX_1(t) + cX_2(t),$$

![Figure 8-19 Orthonormal vectors.](image-url)
where \(X_1(t), X_2(t), \ldots \) are orthonormal functions and \(a, b, c, \ldots \) are the weighting coefficients.

The constant \(a \) is simply the magnitude of \(S_1(t) \), since the magnitude of \(X_1(t) \), by definition, is unity. To solve for \(b \), the second equation is multiplied by \(X_1(t) \) and integrated:

\[
\int S_2(t)X_1(t)dt = \int bX_1(t)X_1(t)dt + \int cX_2(t)X_1(t)dt.
\]

On the right side of the above equation, the second term is equal to zero (the inner product of two orthonormal functions = 0) and the first term is equal to \(b \) (the inner product of an orthonormal function with itself = 1). Solving for \(b \) produces

\[
b = \int S_2(t)X_1(t)dt.
\]

This is the projection of \(S_2(t) \) on \(X_1(t) \).

The constant \(c \) is determined by the same procedure except that \(X_2(t) \) is used in place of \(X_1(t) \) when multiplying the second equation. Therefore

\[
\int S_2(t)X_2(t)dt = \int bX_1(t)X_2(t)dt + \int cX_2(t)X_2(t)dt
\]

\[
c = \int S_2(t)X_2(t)dt
\]

This is the projection of \(S_2(t) \) on \(X_2(t) \). Note that \(X_2(t) \) is not generally in the direction of \(S_2(t) \).

The first orthonormal basis function is therefore defined as

\[
X_1(t) = S_1(t)/a,
\]

where \(a \) is the magnitude of \(S_1(t) \).

The second orthonormal basis function is derived by subtracting the projection of \(S_2(t) \) on \(X_1(t) \) from the signal \(S_2(t) \) and dividing by the total magnitude:

\[
X_2(t) = [S_2(t) - bX_1(t)]/c,
\]

where \(c \) is the magnitude of the resultant vector \(S_2(t) - bX_1(t) \). Therefore the magnitudes are equal to

\[
a = S_1(t)/X_1(t) = \text{abs}(S_1)
\]

\[
b = \int S_2(t)X_1(t)dt \leq S_2, X_1 \geq \text{inner product}
\]

\[
c = \int S_2(t)X_2(t)dt \leq S_2, X_2 \geq \text{inner product}.
\]
A phasor diagram is provided in Figure 8-19 to show the projections of the vectors.

8.13 Basic GSO

A basic GSO system is shown in Figure 8-20. The weight \(w_1 \) is chosen so that the two outputs, \(V_o \) and \(W_o \), are orthogonal; that is, the inner product \(\langle V_o, W_o \rangle = 0 \). This gives the result:

\[
\langle J + S_1, J + S_2 - w_1(J + S_1) \rangle = 0
\]

\[
\langle J, J > (1 - w_1) - w_1 < S_1, S_1 > = 0
\]

\[
w_1 = \frac{|J|^2}{|J|^2 + |S_1|^2} = \frac{1}{1 + p}
\]

\[
p = \frac{1 - w_1}{w_1} = \frac{|S_1|^2}{|J|^2}
\]

\[
S_1 = \text{Jammer} \quad \rightarrow \quad \text{PD} \quad \rightarrow \quad V = S_1 = \text{Jammer}
\]

\[
S_2 = \text{Signal + Jammer} \quad \rightarrow \quad \text{Weight 1} \quad \rightarrow \quad \text{PD}
\]

\[
weight \quad k < S_1, S_2 > \quad \rightarrow \quad k = \frac{1}{|S_1|^2}
\]

\[
<V, W> = 0
\]

\[
W = \text{Sp (desired signal)} = S_2 \cdot k < S_1, S_2 > S_1
\]

Figure 8-20 Basic GSO used for jammer suppression.

Note the following assumptions:

1. Same \(J \) in both inputs.
2. \(J, S_1, S_2 \) are orthogonal.
3. \(|J|^2, |S_1|^2, |S_2|^2 \) are known.
4. \(p \ll 1 \). This means the jammer is much larger than the signal \(S_1 \).
The outputs are

\[V_o = J + S_1 \]
\[W_o = J + S_2 - w_1(J + S_1) = J(1 - w_1) + S_2 - w_1S_1 \]
\[= J(p/(1 + p)) + S_2 - S_1(1/(1 + p)). \]

Since \(p \ll 1 \), then

\[W_o = Jp + S_2 - S_1 = |S_1 - S_2|^2. \]

This shows that the jammer signal has been attenuated in the \(W_o \) output.

Suppose only a jammer exists in one of the inputs, \(S_1 \), and the jammer plus signal is in \(S_2 \), as shown in Figure 8-20. Taking the projection of \(S_2 \) on the orthonormal function \(Q_1 = S_1/|S_1| \) provides the amount of jammer present in \(S_2 \):

\[b = \left(b, \frac{S_1}{|S_1|} \right) \]

This scalar quantity multiplied by \(Q_1 \) produces the jammer vector \(bQ_1 \). Subtracting the jammer vector from \(S_2 \) gives the amount of signal present (\(S_p \)) in \(S_2 \):

\[S_p = S_2 - bQ_1 = S_2 - \left(S_2, \frac{S_1}{|S_1|} \right) \frac{S_1}{|S_1|} \]

Thus the jammer is eliminated. In the implementation of these systems, the \(|S_1| \) values are combined in a scale factor \(k \) where

\[k = 1/|S_1|^2. \]

Thus the final result is

\[S_p = S_2 - k(S_2, S_1)S_1. \]

The constant \(k \) is incorporated in the specification of the weight value or in the integration process during the generation of the weights in an adaptive system.
8.14 Adaptive GSO Implementation

If a system uses an omnidirectional antenna and assumes jammer only for \(S_1 \) (since the jammer is much larger in amplitude than the desired signal), and a directional antenna for signal plus jammer for \(S_2 \) (since the antenna will be pointed toward the desired signal), the example above will apply. The technique starts with updating weights to force the outputs to be orthogonal so that the inner product \(\langle v, w \rangle = 0 \). The weights are updated by the inner product of the outputs.

Assume the only the jammer signal is \(S_1(t) \). The magnitude of the jammer is equal to \(a = \text{abs}(S_1) \). Signal \(S_2(t) \) is made up of a signal vector and a jammer vector. Therefore the magnitude of the signal vector \(S_2(t) \) that contains no jammer is equal to

\[
S_v = c x_2(t) = S_2(t) - b x_1(t)
\]

\[
x_1(t) = S_1(t)/\text{abs}(S_1)
\]

\[
b = \langle S_2, x_1 \rangle = \langle S_2, S_1/\text{abs}(S_1) \rangle
\]

\[
S_v = S_2 - [\langle S_2, S_1/\text{abs}(S_1) \rangle S_1/\text{abs}(S_1)]
\]

\[
S_v = S_2 - [\langle S_2, S_1 \rangle S_1/\text{abs}(S_1)^2] = S_2 - S_1[\langle S_2, S_1 \rangle/\text{abs}(S_1)^2]
\]

Weight value \(w = \langle S_2, S_1 \rangle/\text{abs}(S_1)^2 \)

\[
S_v = S_2 - wS_1 = S_{\text{dir}} - w_1 S_{\text{omni}}.
\]

An adaptive filter configured as an adaptive noise canceller can be used as a GSO jammer suppressor (see Figure 8-21).

This shows a quadrature system with separate I and Q outputs and separate weight generators. The error signal is produced by subtracting the weighted reference input signal (the received signal from the omnidirectional antenna) from the signal received from the directional antenna:

\[
e = S_{\text{dir}} - w_1 S_{\text{omni}}.
\]
The squared error is therefore
\[e^2 = S_{\text{dir}}^2 - 2w_1 S_{\text{dir}} S_{\text{omni}} + w_1^2 S_{\text{omni}}^2. \]

The mean square error is
\[\text{MSE} = e^2 = w_1^2 S_{\text{omni}}^2 - 2w_1 S_{\text{dir}} S_{\text{omni}} + S_{\text{dir}}^2. \]

Taking the gradient of the MSE and setting this equal to zero, the optimum weight value can be solved:
\[2w_1 S_{\text{omni}}^2 - 2S_{\text{dir}} S_{\text{omni}} = 0 \]
\[w_{1(\text{opt})} = \frac{S_{\text{dir}} S_{\text{omni}}}{S_{\text{omni}}^2}. \]
Since the error output is the desired signal output, then
\[e = S_{dir} - (S_{dir}, S_{omni}/|S_{omni}|^2)S_{omni}. \]

The inner product is defined as
\[\langle X_1, X_1 \rangle = \int X_1^2(t)dt = E[X_1^2(t)] = X_1^2 = |X_1(t)|^2 \]
\[\langle X_1, X_2 \rangle = \int X_1(t)X_2(t)dt = E[X_1(t)X_2(t)] = X_1(t)X_2(t) \]

Therefore the error can be expressed as
\[e = S_{dir} - \left(\frac{\langle S_{dir}, S_{omni} \rangle}{|S_{omni}|^2} \right) S_{omni} \]

The second term on the right side of the above equation is the projection of \(S_{dir} \) on the orthonormal function \((S_{omni}/|S_{omni}|) \) times the orthonormal function. This determines the amount of jammer present in \(S_{dir} \). This result is then subtracted from \(S_{dir} \) to achieve the desired signal, \(e \), and eliminate the jammer. The LMS algorithm assumes that the gradient of the MSE can be estimated by the gradient of the squared error, which turns out to be twice the error times the reference.

8.15 Intercept Receiver Comparison

Some receivers are designed to intercept the transmissions of an unknown transmitter. These types of receivers are called intercept receivers. There are many types of intercept receivers that are used to perform this task. Below is a list of some types of intercept receivers, often referred to as electronic countermeasures (ECM) receivers, which are designed to listen to broadcasts from other sources (see Figure 8-22). Included are the disadvantages and advantages to using them. This is not intended to be a comprehensive list, but is provided to give a general idea of what type of receivers can detect the desired signal.

1. **Crystal video receiver**: This type of receiver uses a crystal video detector circuit that searches to see if a signal is present. This is generally for narrowband detection (to limit the noise into the detector) unless tunable filters are employed.
a. The advantages of crystal video receivers are they are small in size, simple to design, and less expensive compared to other types of intercept receivers.

b. The disadvantage of crystal video receivers are that they do not have a broad frequency detection ability unless tunable filters, which are complex and expensive, are used in the front end.

2. Instantaneous frequency measurement (IFM) (delay line discriminator receiver): This type of receiver usually consists of a delay line discriminator design to detect one single frequency.

a. The advantages of IFM receivers are high frequency resolution detection capability and the ability to detect wide frequency bandwidths.

b. The disadvantage of IFM receivers is that they cannot handle multiple frequencies at the same time.

3. Scanning superheterodyne receiver: This receiver uses a standard superheterodyne receiver with a tuning oscillator to cover the wide frequency bandwidth. However, this is not instantaneous and is dependent...
on the sweep time of the oscillator. This is sometimes referred to as a spectrum analyzer receiver.

a. The advantages of scanning superheterodyne receivers are good frequency resolution detection capability and coverage of a wide frequency dynamic range.

b. The disadvantages of scanning superheterodyne receivers are that they do not cover the band instantaneously; they are dependent on scan time, and the spurs that are generated in the scanning process result in false detections of the signal.

4. Instantaneous Fourier transform (IFT) (Bragg cell, acousto-optic device): This type of receiver uses an acousto-optic device such as a Bragg cell. Simply stated, this receiver uses optical rays that project on a surface at different points dependent on the incoming frequency. The frequency can then be determined by the location of the ray.

a. The advantages of IFTs are good frequency resolution detection capability, multiple frequency handling, and instantaneous wideband coverage.

b. The disadvantages of IFTs are the small dynamic range (20–30 dB) and the size of the receiver.

5. Microscan receiver (extremely fast scanner): This type of receiver, often referred to as a chirped receiver, uses a surface acoustic wave (SAW) device that is excited by an impulse input signal. Since all frequencies are contained in an impulse, these frequencies are mixed with the incoming signal and delayed by means of acoustic waves, and the output is time dependent on the resultant frequencies. This is basically an extremely fast scanning receiver.

a. The advantages of microscan receivers are wideband instantaneous frequency coverage, good frequency sensitivity, and very small size.

b. The disadvantages of microscan receivers are limited dynamic range capability (30–40 dB) and the pulse information is lost. The dynamic range reduction is due to the sidelobes that are generated in the process.

6. Channelized receiver: This type of receiver uses multiple frequency channels that provide true instantaneous frequency processing. This is
basically several receivers fused together, with each receiver containing bandwidths to cover the total desired broad bandwidth.

a. The advantages of channelized receivers are good frequency resolution detection capability, detectability of multiple frequencies, and a wide frequency IDR.

b. The disadvantages of a channelized receiver are the size and cost.

8.16 Summary

Burst jammers are effective jammers that capture the AGC time constant to maximize the ability to jam a receiver with minimum average power. The burst clamp is used to mitigate this type of jammer by preventing the AGC from being captured.

Adaptive filters can be configured as ALEs to suppress undesired narrowband signals. When these filters are used at high frequencies and over large bandwidths, modifications need to be made. The time delay through portions of the system needs to be compensated for and is accomplished in the digital filter by using a tap value to generate the signal and a delayed tap value to update the weights. Also, for small variations in delay, the clock is modified in the digital filter. Once the delay is set, constant delay over the band of operation is important for proper operation of the filter. A variable synthesizer is used in the design to achieve a wide operational bandwidth for the ALE. This allows the filter to be positioned across a given bandwidth with minimal hardware. A quadrature scheme is used to eliminate filtering constraints and provide twice the processing bandwidth for the ALE. However, the performance of the system relies on the quadrature channels being balanced in both phase and amplitude. The LO bleed-through problem is reduced by using a double downconversion scheme, since the isolation of the LO signal is greater for lower frequencies. The isolation for the conversion process is established in the first low-frequency mixer because the LO signal for the second mixer lies outside of the passband and can be filtered.

Gram-Schmidt orthogonalizers can be used to reduce the effects of jamming signals. One of the assumptions in this approach is that the jammer signal level is much higher than the desired signal level. The basic GSO uses two inputs, with one of the inputs containing more signal than jammer. This applies to having two antennas with one of the antennas directed toward the signal providing higher signal power. The error signal for feedback in updating the weight value is produced by subtracting the weighted reference input signal from the received signal which contains the higher
level of desired signal. When the weight has converged, then the jamming signal is suppressed.

Spread spectrum systems can be used to reduce the detectability by other receiver systems. These types of systems are called low probability of intercept (LPI) systems. Research is ongoing to design better intercept receivers and then to design better LPI receivers, and the race goes on.

References

Problems

1. What is meant by capturing the AGC of a system?

2. What would be a good pulse frequency for a burst jammer given an AGC response time of 1 μsec?

3. What is the main difference between a digital FIR filter and an adaptive filter?

4. Why is either filtering or quadrature method required to operate the adaptive filter in the RF world?

5. What is the μ value in the LMS algorithm represent?

6. What is the result of increasing the μ value on convergence time, stability, and steady-state accuracy?
7. Why is the assumption that the jammer is the only signal present in the omnidirectional antenna of a GSO jammer suppression filter a good assumption?

8. When might the assumption that the jammer is the only signal present in the omnidirectional antenna of a GSO jammer suppression filter be a bad assumption?

9. What is the best detection receiver if cost, size, and complexity are not issues, and why?

10. If a narrowband signal is present in the desire passband, what technique can be utilized to reduce its affect on the desired signal?
The last few years there has been increased interest in the commercialization of the Global Navigation Satellite System (GNSS) which is often referred to as the Global Positioning System (GPS) in various applications. A GPS system uses spread spectrum signals—binary phase-shift keying (BPSK)—emitted from satellites in space for position and time determinations. Until recently, the use of GPS was essentially reserved for military use. Now there is great interest in using GPS for navigation of commercial aircraft. The U.S. Federal Aviation Administration (FAA) is looking into the possibility of using a wide area augmentation system (WAAS) to cover the whole United States with one system. There are also applications in the automotive industry, surveying, and personal and recreational uses. Due to the increase in popularity of GPS, and since it is a spread spectrum communication system using BPSK, a brief introduction is included in this text.

9.1 Satellite Transmissions

The NAVSTAR GPS satellite transmits a direct sequence BPSK signal at a rate of 1.023 Mbps using a code length of 1023 bits. The time between code repetition is 1 msec. This is known as the coarse acquisition (C/A) code, which is used by the military for acquisition of a much longer precision code (P-code). Commercial industries use the C/A code for the majority of their applications. There are 36 different C/A codes that are used with GPS which are generated by modulo-2 adding the C/A code with a different
delayed version of the same C/A code (see Figure 9-1). Therefore there are 36 different time delays to generate the 36 different C/A codes. Only 32 codes are used presently for satellite operation; each is assigned a pseudo-random noise (PRN) code number. This number identifies the GPS satellite according to the PRN code it is using. Another way to identify the satellite is by using the space vehicle identification (SVID) number.

![Figure 9-1 Generating 36 different C/A codes.](image)

There are two frequencies that are transmitted by the satellite. The C/A code uses only one of these frequencies, L1, for transmission. The frequency of L1 is 1.57542 GHz. Therefore there are 1540 carrier cycles of L1 for each C/A chip. The frequency of L2 is 1.2276 GHz and it does not contain the C/A code. The P-code, which is used by the military, is transmitted on both frequencies. The P-code is transmitted in quadrature (90°) with the C/A code on L1. The carrier phase noise for 10 Hz one-sided noise B is 0.1 radian root mean square (RMS) for both carriers and the in-band spurious signals are less than –40 dBc.

A summary chart is provided for both the C/A code and the P-code as follows:

- **Coarse acquisition (C/A) code:**
 - BPSK spread spectrum modulation waveform
 - 1.023 Mbps chipping rate
 - Code length = 1023 bits
 - Code repetition rate = 1 msec
 - C/A code 3 dB higher than P-code
 - 36 different C/A codes
 - Sliding correlator demodulation
 - Frequency L1 = 1.57542 GHz, 1540 cycles/chip
Military uses precision code (P-code):
- BPSK spread spectrum modulation waveform.
- 10.23 Mbps chipping rate
- Code length approximately 1 week long
- Uses both \(L_1 = 1.57542 \) GHz and \(L_2 = 1.2276 \) GHz
- P-code transmitted in quadrature with C/A code on L1

The antenna used in the satellite for transmissions has a 3 dBi gain
and is linear, right-hand circularly polarized. The group delay deviation for
the transmitter is within \(\pm 3 \) nsec, \(2\sigma \).

9.2 Data Signal Structure

The satellite navigation data are sent out at a 50 bps rate. As a general
rule, the information bandwidth should be at least 1 kHz. The data are sent
out in 25 full frames with 5 subframes in each frame. Each subframe is
300 bits long (10 words at 30 bits each) providing frames that are 1500
(5 \times 300) bits long. The total number of bits required to send out the total
satellite information is 37.5 kbits (25 \times 1500). Therefore the time it takes
to send out the total number of bits at a 50 bps rate is 12.5 minutes:

\[
37.5 \text{kbits}/50 \text{bps} = 750 \text{sec} = 12.5 \text{ min}.
\]

The following five subframes contain the data necessary for GPS oper-
ation:

- Subframe 1: SV clock corrections.
- Subframes 2 and 3: Complete SV ephemeris data. Ephemeris data con-
tain such things as velocity, acceleration, and detailed orbit definitions
 for each satellite.
- Subframes 4 and 5: Subframes 4 and 5 accumulated for all 25 frames
 provide almanac data for 1 to 32 satellites. The almanac data are all
 the position data for all the satellites in orbit.

Note that the clock corrections and space vehicle (SV) or satellite ephemeris
data are updated every 30 sec.
Each of the subframes has an identification (ID) code 001,010,011,
100,101 and also uses a parity check. Parity check involves simply adding
the number of “1”s sent, and if an odd number is sent, the parity is a “1,” and if an even number is sent, then the parity is a “0.”

9.3 GPS Receiver

The standard GPS receiver is designed to receive the C/A coded signal with a signal input of -130 dBm. Since the C/A code amplitude is 3 dB higher than the P-code amplitude and the frequency of the C/A code is 1/10 of the P-code, then using a filter, the receiver is able to detect the C/A code messages. Note that the C/A code also lags the P-code by 90$^\circ$ to keep them orthogonal and keep them further separated. For most systems, the SV needs to be greater than 5$^\circ$ elevation in order to keep multipath and jamming signals at a minimum. Since the GPS signal is a continuous BPSK signal, a sliding correlator can be used to strip off the 1.023 MHz chipping signal, leaving the 50 Hz data rate signal.

9.4 Atmospheric Errors

The atmospheric path loss for the satellite link is approximately 2 dB. The troposphere and ionosphere cause variable delays, distorting the time of arrival (TOA) and position (errors are dependent on atmosphere, angle, and time of day). These delays are extreme for low-elevation satellites. In order to compensate for the errors, ionosphere corrections are implemented using both frequencies (f_{L1}, f_{L2}):

$$PR = \frac{f_{L2}}{f_{L2}^2 - f_{L1}^2} (PR(f_{L2}) - PR(f_{L1}))$$

where

- PR = compensated pseudo-range,
- f_{L2} = frequency of L2,
- f_{L1} = frequency of L1,
- $PR(f_{L2})$ = pseudo-range of L2,
- $PR(f_{L1})$ = pseudo-range of L1.

If the pseudo-ranges of L1 and L2 are not known, then the measured and predicted graphs over time need to be used. This would be the case for a C/A code-only receiver. A simple C/A code receiver uses the ionospheric correction data sent by the satellites for a coarse ionosphere correction solution.
9.5 Multipath Errors

The angular accuracy for platform pointing is affected by multipath as shown below:

\[\sigma_0 = \sigma_R / L, \]

where
\[\sigma_0 = \text{angular accuracy of platform pointing}, \]
\[\sigma_R = \text{range difference caused by multipath}, \]
\[L = \text{baseline}. \]

Good antenna design can reduce multipath to approximately 1 m. The receiver antenna is designed to reduce ground multipath by ensuring that the gain of the antenna is low toward the ground and other potential multipath sources compared to the gain toward the satellites of interest.

Using integrated Doppler (or carrier phase) can also improve the effects of multipath on the overall positioning solution to help smooth the code solution. Further discussion on smoothing the code solution with the integrated Doppler of the carrier follows later in this chapter.

Another way to reduce multipath errors is to first determine that the error is caused by multipath and then enter it as a state variable in a Kalman filter. This solution requires that the multipath can be measured accurately and is constant.

It is interesting to note that multipath errors can actually give you a closer range measurement. By definition, multipath arrives later than the direct path, however, the resultant autocorrelation peak can be distorted such that the tracking loop (early-late gate, etc.) produces a solution that is earlier than the direct path.

9.6 Narrow Correlator

Multipath can cause errors in range due to distortion of the autocorrelation peak in the tracking process. One way to reduce errors is to narrow the correlation peak, which is known as the narrow correlator. The early-late and tau-dither loops are generally operated on half chips (i.e., a half chip early and a half chip late), which provides points on the cross-correlation peak halfway down from the top on both sides. By using less than half-chip dithering, the points are closer to the peak, reducing the ambiguity caused by multipath (see Figure 9-2). The accuracy of the measurement is also greatly improved for the same reasons.
When using the narrow correlator, it is important to note that the pre-correlation bandwidth is larger depending on the step size of the correlator, for example:

- 2MHz is required for 1 C/A chip (± 0.5 chip) standard correlator.
- 8MHz is required for 0.1 C/A chip (± 0.05 chip) narrow correlator.

The narrower the correlator, the wider the precorrelation bandwidth needs to be because the peak needs to be sharper, thus the input code needs to have sharper rise times to create this sharper peak. If the peak is rounded, then the narrow correlator does not improve performance because of the ambiguity of the samples. One of the drawbacks of the narrow correlator is a larger precorrelation bandwidth (8 MHz compared to 2 MHz), which is also more vulnerable to jammers and noise, and a faster clock is required. However, in many precision navigation applications, this technology is preferred.

For P-code receivers, the P-code null-to-null bandwidth is 20 MHz. Therefore, in order for the narrow correlator to work, the bandwidth should be approximately 80 MHz, approximately four times, to ensure that the peak of the correlator is sharp. The problem is that the satellite filters this output signal using a bandwidth of approximately 20 MHz. The increased bandwidth in the receiver does not produce sharper peaks in the autocorrelation peak because the high-frequency components are filtered out at the satellite transmitter, therefore the correlation peak is rounded (see Figure 9-3). This makes it hard to detect differences in the values that drive the locked conditions.
9.7 Selective Availability

Selective availability (SA) was developed by the U.S. Department of Defense (DOD) to make C/A code positioning less accurate. SA is caused by jittering or dithering the code clock and provides an improper description of the satellite orbit, or in other words, ephemeris data corruption. This clock dithering reduces the accuracy of the C/A code receiver since the method of how SA is generated is not available to the public. With SA turned on, the worst-case accuracy of a C/A code receiver is approximately 100 m, which also includes other error sources. SA was turned off in May 1, 2000, and is currently not a factor in the accuracy of the GPS C/A code receiver. This improves positioning accuracy from approximately 100 m to approximately 20 m for stand-alone GPS systems. The actual accuracy of the GPS C/A code receiver is dependent on several other parameters and conditions.

Note that many of the specifications written for accuracy are done with SA turned off. This provides a good baseline for comparison, but caution needs to be used when using the actual accuracy numbers if SA is ever turned back on again. The probability of SA being turned back on is remote, since there are techniques to cancel SA for accurate C/A code receivers; these will be discussed later in this chapter.
9.8 Carrier Smoothed Code

The code solution by itself is noisy, particularly with the effects of multipath, SA, and atmosphere. This makes it difficult to obtain accurate measurements for the code-derived pseudo-ranges and introduces variations in the measurements. To aid in the code solution, the carrier is used to help smooth the variations in the code solution.

The carrier solution is a low-noise solution. It contains a wavelength ambiguity so that it does not know which of the wavelengths it is supposed to be comparing for the phase offset. For example, the difference in phase may be 10°, but it may be off several cycles or wavelengths—370°, 730°, etc. By using the code solution which contains no wavelength ambiguity and the carrier phase solution, a carrier smoothed code can be produced. The phase change at selected repeatable points of the carrier is used to smooth the noise of the received code (see Figure 9-4).

- Smooth line is the carrier phase that smooths out the noisy code measurements

![Figure 9-4 Carrier smoothed code using integrated Doppler.](image)

This method of measuring the carrier phase is referred to as integrated Doppler and is performed on each satellite. By integrating the Doppler frequency of the carrier $d\phi/dt$, $d\phi$ is obtained. This is the phase shift that changes with time, which is directly proportional to the change of range with time. Therefore this phase plotted with time has the same slope as range plotted with time. The absolute range is not required, since the phase measurements are used only to smooth out the code solution. The low-noise carrier integrated Doppler plot (corresponding to range change with time) is better than the noisy code solution of the range, which is also changing
with time. The Doppler is a changing frequency, and integrating a frequency change produces a phase change, which is plotted on the same graph as the range change with time (see Figure 9-4).

Another way to evaluate the integrated Doppler is to simply use the frequency times the period of integration:

\[
\text{Integrated Doppler} = \int f \, dt = f \times t.
\]

For example, if the Doppler frequency is 1 kHz and the time of integration is from 0 to 0.5 sec, then the equation becomes

\[
\text{Integrated Doppler} = \int_{0}^{0.5} 1000 \, dt = 1000 \times t \bigg|_{0}^{0.5} = 1000 \times 0.5 = 500 \text{ sec}
\]

This is used to smooth out the code variations. For example, if the satellite is moving away from the receiver, the range \((R)\) is positively increasing as the phase \(\phi\) is negatively increasing. If the satellite is moving toward the receiver, the range is positively decreasing while the phase is positively increasing. Note that the Doppler is negative for a satellite going away, so the phase \(\phi\) is negative, and yet the range is positive. A Kalman filter is often used to incorporate the integrated Doppler in the code solution. The Kalman filter is designed to achieve minimum variance and zero bias error. This means that the filter follows the mean of the time-varying signal with minimum variation to the mean. The Kalman filter uses the phase change to smooth the estimated range value of the solution as follows:

\[
R_a = R_c - ID,
\]

where
- \(R_a\) = actual range,
- \(R_c\) = measured range,
- \(ID\) = integrated Doppler.

A filter could be used to smooth the noise of the code, but it would be difficult to know where to set the cutoff frequency to filter out the changes since this would vary with each of the satellites being tracked.

9.9 Differential GPS

Differential GPS (DGPS) uses a differencing scheme to reduce the common error in two different receivers. For example, if the GPS receivers are
receiving approximately the same errors due to ionosphere, troposphere, and SA, these errors can be subtracted out in the solution. This would increase the accuracy tremendously, since these errors are the main contributors to reduced accuracy. As noted before, this technique was used to virtually eliminate the problems with SA, which has now been turned off. The main contributor to errors presently is the ionosphere.

Differential GPS uses a ground-based station with a known position. The ground station calculates the differential pseudo-range corrections, that is, how the pseudo-ranges are different from the surveyed position. These corrections are sent to other nonsurveyed GPS receivers, such as an aircraft or ground vehicle. These pseudo-range corrections are then applied to the aircraft’s or ground vehicle’s pseudo-ranges for the same satellites (see Figure 9-5). The accuracy obtained by differential means can produce a position solution that is approximately 100 times more accurate than an autonomous C/A code receiver: approximately 1 to 3 m.

![Figure 9-5](image)

Figure 9-5 Differential GPS system for accurate positioning.

9.10 DGPS Time Synchronization

The GPS time provided in the satellite navigation data is used to synchronize the receiver's time reference. Selective availability can affect the time reference. DGPS helps to reduce SA effects on both time and orbital
information. It is assumed that the time stamping of the aircraft and ground station occur at the same time even though absolute time is varied by SA. Currently, with SA turned off, the time synchronization is not affected by SA.

9.11 Relative GPS

Relative GPS is the determination of a relative vector by one receiver given its own satellite measurements and also the raw pseudo-range measurements from the second receiver. The objective is to produce an accurate positioning solution between two systems relative to each other and not absolute positioning of each system.

For example, if an aircraft desires to land on an aircraft carrier using GPS, the aircraft carrier pseudo-ranges are uplinked to the aircraft. The aircraft calculates its relative position using its own measured pseudo-ranges with the pseudo-ranges that were sent by the aircraft carrier. The positioning errors that are in the pseudo-ranges from the aircraft carrier will be basically the same as the pseudo-ranges in the aircraft, so when the relative position solution is calculated, the errors are subtracted out. To enhance accuracy and integrity, the same set of satellites must be used so that the errors are common.

In a relative solution, atmospheric effects are assumed to be identical for both the ground, or aircraft carrier, and airborne units. Therefore no tropospheric or ionospheric corrections are performed on the independent measurements. In a relative GPS system, the absolute accuracy depends upon the accuracy of both the ground and airborne receivers. However, the absolute position does not need to be known, only the relative position with respect to each other.

Suppose that the GPS positioning solution for one GPS is off by 20 m toward the north. If the same satellites are used in the calculation of the GPS positioning solution for the other GPS, the assumption is that the other GPS would be off by 20 m toward the north. Therefore both of their absolute positions would be off by 20 m toward the north. Since they are off by the same amount, their relative position would be accurate, since the errors that caused them be off are close to the same and can be subtracted out (see Figure 9-6).

The accuracy for a relative GPS is equivalent to the accuracy for a DGPS, or approximately 100 times more accurate than standard GPS—approximately 1 to 3 m. Therefore, using relative GPS, the absolute accuracy does not matter, only the relative accuracy between the aircraft and the aircraft carrier (see Figure 9-7). Both relative GPS and DGPS use two different GPS receivers for accuracy, however, DGPS uses the difference from
Position information between users

Actual Position

Equal offsets, absolute positioning not required

Figure 9-6 Relative GPS providing accurate relative positioning.

Figure 9-7 Relative GPS application for aircraft landing on an aircraft carrier.
a surveyed point to calculate the errors needed to update the other GPS receiver, and the relative GPS uses the difference in the two GPS receivers to cancel the common errors.

9.12 Doppler

Doppler or range rate caused by the satellite moving toward or away from the GPS receiver needs to be determined so that it does not cause a problem in carrier phase tracking systems or when the carrier is used to smooth the code. Note that in a DGPS or relative GPS system, this Doppler is corrected in the process. The Doppler frequency range is about ± 5 kHz for the worst case. Doppler causes the number of cycles to be off when using the carrier phase approach, which is discussed later in the chapter. If Doppler is known, then the number of cycles are known, but not λ ambiguities inherent with carrier phase tracking.

9.13 Kinematic Carrier Phase Tracking

Kinematic carrier phase tracking (KCPT) is a method used for very high accuracy positioning, less than 0.1 m. KCPT is most commonly used in survey applications, but has recently been applied to high-accuracy commercial aircraft approach and landing systems. The KCPT solution uses the difference in phase of the carrier to determine range. The problem with the KCPT solution is the cycle ambiguity or wavelength ambiguity. The phase difference may be known, but the number of cycles for the range is not. But there are techniques to resolve the ambiguity of the number of cycles. If the receiver is moving, both the Doppler caused by the satellite and the Doppler due to receiver movement need to be considered.

One of the concerns with the KCPT solution after acquisition is what is known as cycle slip, especially when it is undetected. This is where the number of calculated cycles changes. If the cycle count slips, the range error is off by the number of cycles that have slipped. For L1, one cycle slip affects the pseudo-range by approximately 0.6 ft or 19 cm. The system needs to detect cycle slip in order to adjust the cycle number, maintain accuracy and continuity of function, and ensure the integrity and safety of the application.

There are several methods of detecting cycle slip and correcting the number of cycles. One possibility is the use of a differential autonomous integrity monitor, where the ground observables are compared to the airborne observables for each satellite. Also, multiple solutions can be performed in parallel using the same raw measurement data, then these multiple
solutions are compared to each other to detect cycle slips. Further, other real-time tests which take into consideration bias and noise can be performed to detect cycle slips. Regardless of the method used to detect cycle slips, the ambiguities must be resolved again using some a priori data from the previous resolution.

9.14 Double Difference

The double difference takes the difference between satellites and the difference between antennas, ground and air, and performs the double difference. Any two receivers can be used for the double difference. The main objective is to solve for N, the number of wavelengths:

$$\nabla \Delta = \Delta \phi_1 - \Delta \phi_2 = b(e_1 - e_2) + N\lambda,$$

where

- b = baseline vector,
- e_1, e_2 = unit vectors to satellites.

Given the following absolute phase measurements below:

$$\phi = \rho + d\rho + c(dt - dT) + \lambda V - d_{ion} + d_{trop} + \varepsilon \phi,$$

where

- ρ = geometric range,
- $d\rho$ = orbital errors,
- dt = satellite clock offset,
- dT = receiver clock offset,
- d_{ion} = ionosphere delay,
- d_{trop} = troposphere delay,
- ε = noise.

There are two ways to achieve the double difference. One is to take the difference for one receiver and two satellites for first the carrier phase and then the code:

$$\phi = \delta\rho + \delta d\rho + c\delta(dt - dT) + \lambda \delta V - \delta d_{ion} + \delta d_{trop} + \varepsilon \delta \phi$$

$$\delta \rho = \delta \phi + \delta d\rho + c\delta(dt - dT) + \delta d_{ion} + \delta d_{trop} + \varepsilon \delta \phi.$$

The d_{ion} in the top equation is very small or zero in many cases if the ionospheric effects are the same for both the aircraft and the ground station.
\[\Delta V = (\phi_1 - \phi_2)_{Rec1} - (\phi_1 - \phi_2)_{Rec2} \]
\[\Delta V = \Delta \phi_1 - \Delta \phi_2 = b \cdot (e_1 - e_2) + N \lambda \]
\[\Delta \phi = \rho + \rho + c (\delta t - \delta T) + \lambda N - d_{ion} + d_{trop} + \varepsilon \phi \]

Figure 9-8 Double difference for kinematic carrier phase ambiguity resolution.

The second receiver does the same and then the resultants are subtracted to achieve the double difference (see Figure 9-8).

Another approach is to take the difference between the two receivers and one satellite, then take the difference between the two receivers and the next satellite. Finally, take the difference of the two resultants.

Note that the atmospheric losses are reduced or eliminated by receiver differences. For short antenna baselines, they are eliminated. For large baselines, they are reduced inversely proportional to the separation of the antennas.

9.15 Wide Lane/Narrow Lane

Wide lane is used to reduce the cycle ambiguity inherent in the carrier phase tracking process. Wide lane uses the difference in the received frequencies L1 and L2 (L1 – L2), which produces a lower frequency (348 MHz).
containing a larger wavelength, approximately 3.5 to 4.5 times greater. Therefore the ambiguity search time is 3.5 to 4.5 times smaller. The lower frequency contains less cycle ambiguities because there are fewer cycles over the same distance, however, the disadvantage is that the accuracy is reduced.

Narrow lane uses the combination of L1 and L2 (L1 + L2), which provides more accuracy at the expense of more ambiguities to search over. A combination can be used: wide lane for ambiguity search and narrow lane for accuracy.

The frequencies and wavelengths are shown below:

\[
\begin{align*}
L1 &= 1.57542 \text{ GHz} = 19 \text{ cm} \\
L2 &= 1.2276 \text{ GHz} = 24 \text{ cm} \\
L1 - L2 &= 348 \text{ MHz} = 86 \text{ cm} \\
L1 + L2 &= 2.8 \text{ GHz} = 11 \text{ cm}.
\end{align*}
\]

9.16 Other Satellite Positioning Systems

Two other satellite positioning systems use their own satellites in space to provide positioning. Future satellite receivers are going to be capable of receiving these additional satellite positioning systems for better coverage worldwide.

The Global Navigation Satellite System developed by the Soviet Union, which is known as GLObal’naya NAVigatsionnaya Sputnikovaya Sistema (GLONASS), has been in operation since the mid-1990s. The system consists of 24 medium earth orbit (MEO) satellites: 21 are used for positioning, with 3 spares. However, the total number of operational satellites has varied over the years. The satellites are split into three inclined orbital planes separated by 120°, with an orbital time of 11 hours and 15 minutes. The GLONASS consists of a low-accuracy C/A code and a high-accuracy P-code for military use. The low-accuracy code is similar to GPS stand-alone C/A code with SA turned on, less than 100 m. The high-accuracy P-code provides accuracy of about 10 m. The GLONASS operates in two frequency bands—1602.5625–1615.5 MHz and 1240–1260 MHz—using 25 channels separated by 0.5625 MHz and frequency division multiplexing for separation of users.

The Galileo In-Orbit Validation Element (GIOVE) is a European satellite positioning system being developed and implemented. The first satellites are in orbit and the plan is to have 30 satellites in orbit by the year 2010. This satellite system will share frequency bands with the United States and provides separation of users by code division multiplexing using different pseudo-noise codes for each satellite.
9.17 Summary

Global Positioning System technology is being used for many applications including surveying, air traffic control and landing, position location for hikers, and mapping and location functions for automobiles. Originally developed for military applications, GPS has been adapted for commercial use using mainly C/A code receivers. Industry is now focusing more effort on using GPS signals in innovative ways that enhance the accuracy of measurements and therefore improve the availability and integrity of user services.

References

Problems

1. What is the null-to-null bandwidth of C/A code and P-code GPS signals?

2. What is the theoretical process gain of C/A code and P-code signals using a 50 Hz data rate?

3. What are the advantages of using C/A code over P-code?

4. What are the advantages of using P-code over C/A code?

5. What is the advantage of using the narrow correlator detection process?

6. Name at least two disadvantages of using the narrow correlator detection process?

7. Name the two harmful effects of SA on a GPS receiver?
8. What is carrier smoothing? Why is the code noisier than the carrier?

9. What is the main reason that DGPS is more accurate than standard GPS?

10. What is the main obstacle in providing a KCPT solution?

11. Why is the wide lane technique better for solving wavelength ambiguities?

12. How are multiple pseudo-noise codes produced for GPS systems?

13. How are common errors reduced in GPS systems to obtain more accurate results?
Satellite Communications

Satellite communications is becoming a viable means of providing a wide range of communications applications for both the commercial and military sectors. The infrastructure for distributing signals covers the widest range of communications methods. The most remote places on earth can have communications via satellite. Even at the South Pole, satellite communications is a viable means of communications. The infrastructure, bandwidth, and availability of satellite communications, along with combining this technology with other types of communications systems, makes this method an ideal candidate for providing ubiquitous communications to everyone worldwide.

10.1 Communications Satellites

Communications satellites are sent up in space in a geostationary orbit and are made up of a space platform and the payload. The payload is the equipment and various other devices that are mounted on the space platform. One satellite may contain multiple payloads for multiple applications, including different data links operating with their own frequencies and antennas, which are all mounted to the space platform and sent into space.

Each satellite is equipped with attitude control to ensure that the antennas, which are mounted on the spacecraft, are all pointed toward the earth and that the antenna beam is focused on the intended area on the earth (see Figure 10-1).
Several types of disturbances occur that change both the attitude of the geostationary satellite and the orbit of the satellite by a slight amount. The attitude stabilizers that are on board the satellite are there to compensate for the changes in attitude, which is the positioning of the satellite for the antennas. The orbit of the satellite is changed due to movements in the north and south plane in a figure eight pattern over a 24 hour period.

10.2 General Satellite Operation

End users are connected to an earth station at their location, whether it is a personal system or a network serving multiple users. This earth station provides two-way communications up to the satellite, referred to as the space station. The space station relays the two-way information to another earth station that provides the services, whether it is data links; military operations for command, communications, and control; Internet services; telephone; fax; video; music; or other types of information (see Figure 10-2).
Two-way Communications

Downlink

Information Source

Uplink

End User

Internet
Telephone
High-Speed Data
Video
HDTV
Music

Uplink

Satellite

Downlink

Two-way Communications

Figure 10-2 Satellite operational communications link.

10.2.1 Operational Frequencies

There are basically four different bands of operation that are used for satellite communications. The lowest band is called the L-band, which operates with an uplink at 1.6 GHz and a downlink at 1.5 GHz using a narrow bandwidth. The next band is the C-band, which operates at around 6 GHz for the uplink to the satellite and 4 GHz for the downlink from the satellite to the ground station. The next band, which is generally used by the military, is the X-band, which operates at around 8 GHz for the uplink and 7 GHz for the downlink. The next band, which has become popular for telecommunications, is the Ku-band, which operates at around 14 GHz for the uplink and 11–12 GHz for the downlink. The highest band of operation, the Ka-band, is becoming popular for broadband communications and military applications. This band operates at 30 GHz for the uplink and 20 GHz for the downlink. This band provides a much higher bandwidth for high-speed
Table 10-1 Satellite frequency bands.

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Uplink Frequency</th>
<th>Downlink Frequency</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-band 1.6/1.5 GHz</td>
<td>1.6 GHz</td>
<td>1.5 GHz</td>
<td>Narrowband</td>
</tr>
<tr>
<td>X-band 8/7 GHz</td>
<td>7.925–8.425 GHz</td>
<td>7.250–7.750 GHz</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Ku-band 14/12 GHz</td>
<td>14–14.5 GHz</td>
<td>11.5–12.75 GHz</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Ka-band 30/20 GHz</td>
<td>27.5–31 GHz</td>
<td>17.7–21.2 GHz</td>
<td>3.5 GHz</td>
</tr>
</tbody>
</table>

data and more simultaneous end users. A summary of the different frequency bands including the bandwidths is shown in Table 10-1.

These are approximate frequencies and represent bands that are in use. Bands are continually expanding and changing, so these numbers may not be exact and may vary slightly. Also, along with frequency changes, bandwidths change for different systems and uses. In the future, other bands will eventually open up for satellite communications as the demand increases.

The most widely used bands are the 6/4 GHz C-band and the 14/12 GHz Ku-band, with the X-band for military use. However, the 30/20 GHz Ka-band is becoming very popular for both commercial and military communications and is growing rapidly with the interest in broadband communications.

10.2.2 Modulation

The main modulation scheme for the Intelsat/Eutelsat time division multiple access (TDMA) systems is coherent quadrature phase-shift keying (QPSK). Coherent QPSK uses four phase states providing 2 bits of information for each phase state. Since this is coherent QPSK, the absolute phase states 0, 90, 180, and 270 are used to send the information. The data rate is approximately equal to 120 Mbps using a bandwidth of 80 MHz. The Intelsat system uses 6/4 GHz, while the Eutelsat system uses 14/11 GHz. The radio frequency (RF) is downconverted to typical intermediate frequencies (IFs) including 70 MHz, 140 MHz, and 1 GHz.

Techniques have been developed to increase the efficiency of the satellite link. One of these techniques is called digital speech interpolation (DSI). DSI transmits data signals during the dead times of voice channels or telephone calls. This provides a method of sending data and utilizing the times when the voice is not being sent. Another technique of increasing the efficiency of the link combines DSI with a decrease in voice speed from 64 kbps to 32 kbps; this is called digital circuit multiplication equipment (DCME).
10.2.3 Adaptive Differential Pulse Code Modulation

One of the best and most efficient ways that is used extensively to quantize analog signals is a process called adaptive differential pulse code modulation (ADPCM). The analog signals are sampled at a rate greater than the Nyquist rate. Each of the samples represents a code value for that sample, similar to an analog-to-digital converter (ADC). The differential part of the ADPCM describes a process by which the sampled value is compared to the previous sampled value and measures the difference. This difference tells the process if it is larger or smaller value. This difference becomes the code word for that sample. The adaptive part of the modulation scheme means that the step size can be made finer or coarser depending on the last samples. This helps in tracking large analog voltage excursions. If the samples are continually increasing, then the step value is increased. If the samples are continually decreasing, then the step size is decreased (see Figure 10.4).

10.3 Fixed Satellite Service

Satellite communications using geostationary satellites to provide services to the end user is known as fixed-satellite service (FSS). FSS is a radio communications service between fixed points on the earth using one or more geostationary satellites.
10.4 Geosynchronous and Geostationary Orbits

Most satellites are approximately 22,000 miles above the earth’s surface. If they follow a geosynchronous orbit, then the period of the orbit is equal to the earth’s rotation. If it is only geosynchronous, then it is not a fixed position as far as the view from the earth. The orbits are inclined with respect to the equator (see Figure 10-4).

Most communications satellites follow a geostationary orbit. These orbits need to be geosynchronous, but travel in a circular orbit on the equatorial plane. This allows the satellite to be in a fixed position in relation to the view from the earth. Therefore they follow a circular orbit on the equatorial plane, circling the earth once every 24 hours, the same time it takes the earth to rotate once on its axis. By synchronizing the satellite to the earth’s rotation, so that the satellite follows the earth at approximately
the same speed as the angular rotation of the earth, then the satellite will look stationary to a fixed point on the earth (see Figure 10-4).

This provides a continuous link with a given satellite at any time during the day or night. Therefore the communication link will be available all the time, unless there is a problem with the data link between the earth and the satellite. Another advantage is that the ground equipment becomes less expensive and easier to operate since tracking a reasonably stationary satellite is much easier than tracking a satellite with high angular velocity.

Geostationary satellites appear stationary, however, the satellite actually drifts in an orbital figure eight pattern north and south of the equator (see Figure 10-5). Satellites are designed to help mitigate this drift so that the earth stations can be stationary without automatic tracking controls. After these satellites have been in orbit for close to their space lives, this figure eight pattern becomes much larger. For 30-year-old satellites, this orbital tilt becomes large. This phenomenon was actually used to transmit data using old satellites called Marisat F2 and GOES-3. These satellites are used for communications to remote places, such as the South Pole, where it is impossible to see satellites on the equatorial plane. But because part of their orbits follow this figure eight pattern, when they travel south of their orbit, they become visible from the South Pole and can be used for communications (see Figure 10-5).

![Figure 10-5](image)

Figure 10-5 Satellite tilt orbit in a figure eight pattern.

10.5 Ground Station Antennas

Even though the satellite appears to be stationary for a geostationary orbit, large antennas with very narrow beam widths generally require an
automatic tracking device to provide the best performance. Smaller antennas, due to the fact that they have small apertures and wide beams, generally do not require a tracking device. Digital satellite systems for television use a small antenna and do not require any tracking device. The antenna is installed at the site and generally does not have to be adjusted for several years.

The gain of a ground station antenna is largely dependent on the diameter of the antenna and is also frequency related. The equation for the gain of the parabolic antenna that is often used for satellite communications systems is

\[G_t = 10 \log\left[n \left(\frac{\pi D}{\lambda} \right)^2 \right], \]

where

- \(n \) = efficiency factor < 1,
- \(D \) = diameter of the parabolic dish,
- \(\lambda \) = wavelength.

A low-cost system operating in the Ku and Ka bands using small antennas approximately 1 to 2 m in diameter are known as very small aperture terminals (VSATs). VSATs provide two-way communications to a central location called a hub. They are used mainly for businesses, schools, and remote areas. They basically connect remote computers and data equipment to the hub via satellites.

10.5.1 Types of Antennas Used in Satellite Communications Systems

There are basically three types of antenna systems that are incorporated in satellite communications:

- Primary focus antenna system. The feed is positioned in front of the primary reflector and the signal is reflected once from the feed to the intended direction of radiation. The single reflector antenna system is generally less expensive and provides the simplest design (see Figure 10-6a).

- Cassegrain antenna system. This antenna system uses a dual-reflector arrangement. The feed comes from the back of the primary reflector, sends the signal to a convex subreflector, which is mounted in front of the primary reflector, and then the signal is fed to the primary reflector where it is reflected in the desired direction (see Figure 10-6b). Cassegrain antennas are more efficient than primary focus antennas.
for several reasons. The main reason is that the subreflector can be adjusted or formed to optimize the signal reflection and to focus less energy toward the blockage of the subreflector, which falls in the path of the primary reflector. They are also easier to maintain, since the feed horn is located at the base of the reflector, which provides easy
access compared to having the feed horn on structures in front of the reflector.

- Gregorian antenna system. This antenna system is also a dual-reflector system, very similar to the Cassegrain antenna. The main difference is that the subreflector is concave instead of convex. The feed is mounted on the rear of the primary reflector and sends the signal to the subreflector. The signal is reflected in the concave subreflector, which causes a crossover of the reflected signal. The reflected signal is sent to the primary reflector, where it is reflected in the desired direction (see Figure 10-6c). Because of this crossover, the subreflector must be a greater distance from the primary reflector.

10.6 Noise and the Low-Noise Amplifier

The low-noise amplifier (LNA) is critical to the design of a satellite communications system. The system performance is improved directly for each dB of improvement in the LNA. The LNA is the main element that sets the noise figure for the satellite receiver unless there are large losses after the LNA, or the bandwidth becomes larger, which may degrade the receiver performance significantly. A complete noise analysis is addressed in Chapter 1.

10.6.1 Equivalent Temperature Analysis

Another method of doing link budgets that is commonly used for satellite communications is evaluating the system using equivalent noise temperature. Most link budgets for terrestrial systems use noise power, signal power, and the standard kT_B at the output of the LNA, with the losses from the antenna affecting the signal level in the link on a one-for-one basis. However, for satellite transmission systems, the analysis uses equivalent temperatures and converts the noise factor of the LNA to an equivalent temperature:

$$T_e = (F - 1)T_o,$$

where

- $T_e = \text{equivalent temperature due to the increase in noise of the LNA noise factor}$,
- $F = \text{noise factor of the LNA (noise factor} = 10\log(\text{noise factor}))$,
- $T_o = 290^\circ\text{K}$.
Working in reverse to determine the noise factor:

\[T_e = (F - 1)T_o = T_o F - T_o \]

\[F = (T_e + T_o) / T_o. \]

Therefore the noise factor, which is the increase in noise for the receiver, is equal to the additional temperature \(T_e \) that is added in front of an ideal receiver that produces the same amount of increased noise. Therefore, using this equation, if the noise factor of the LNA is low, say 0.561 dB, then the noise factor is 1.14 and the equivalent temperature \(T_e \) is equal to 40°K. To illustrate this, the noise power at the output of the LNA is equal to \(kT_o F \) if the bandwidth and gain is ignored. The input noise power of the LNA is equal to \(kT_o \) with the same assumptions. Therefore the increase in noise power due to the noise factor of the LNA is equal to

\[\text{Increase in noise power} = N_i = kT_o F - kT_o. \]

Since the equivalent noise increase is desired for the link budget, then the equivalent noise \(T_e \) is solved by eliminating the \(k \):

\[T_e = T_o F - T_o = (F - 1)T_o. \]

Since the satellite link budget is in terms of temperature, the losses in the system between the antenna and the LNA need to be converted into temperature (see Figure 10-7). This is done by taking the difference in noise power due to the total losses:

\[\text{Noise power difference of attenuator} = N_d = kT_o - kT_o/L_T \]

\[\text{Temperature difference} = T_d = T_o - T_o/L_T = T_o(1 - 1/L_T), \]

where

- \(T_d \) = temperature difference due to losses or attenuation,
- \(L_T \) = total losses,
- \(T_o \) = temperature of the losses or attenuation, generally equal to \(T_o = 290 \degree K \).

Note that if \(a = 1 \), there are no losses and \(T_d = 0 \). As \(a \) approaches infinity, then \(T_d = T_o = T_o \). Therefore the total equivalent temperature out of the antenna for the receiver, \(T_r \), is

\[T_r = T_e + T_d = (F - 1)T_o + T_o - T_o/L_T = T_o[(F - 1) + 1 - 1/L_T], \]

assuming \(T_o \) is the temperature of the losses.
Typical values of T_r range from 70 °K for the C-band to greater than 200 °K for the Ku-band for small satellite stations. Lower values can be achieved using stabilization.

In order to find the total equivalent temperature for a system, the noise due to the antenna needs to be included. The antenna temperature is determined by integrating the gain and noise temperature in the direction of the antenna. The noise temperature of both the LNA and the temperature due to the losses need to be multiplied by the total losses to provide the temperature equivalent at the location of the antenna. The noise of the antenna is then added as shown:

$$T_{total} = LT(F-1) + Ta(LT-1) + T_A.$$

This is the total equivalent noise temperature for the system shown in Figure 10-7.

Once the temperature of the antenna is calculated, then a figure of merit, which is used to evaluate different satellite systems, can be used to determine the quality of the receiver. The figure of merit is equal to the gain of the antenna divided by the total temperature at the antenna, G/T. The G/T is usually given as dB/°K. Since the gain of the antenna is usually expressed in dBi, the G/T is calculated by the following:

$$G/T = GdBi - 10\log(T_{total}).$$

A typical value is around 30 dB/°K, but this value will vary tremendously with the size of the antenna, frequency, LNA, losses, and other factors.
10.7 The Link Budget

The link budget uses the noise and LNA along with the signal level to determine the range and quality of the satellite link. In order to calculate the signal or carrier level at the input to the receiver, an effective isotropic radiated power (EIRP) is determined from the transmitter.

10.7.1 Effective Isotropic Radiated Power

The EIRP out of the transmitting antenna is the power output of the power amplifier (PA), losses from the PA through the antenna, and the gain of the antenna. The power out of the PA is usually expressed in dBW (10log(watts)).

Several types of PAs are used for transmitting signals to the satellite. They include traveling wave tubes (TWTs), Klystrons, and low-cost field effect transistor (FET) amplifiers. TWTs offer wide bandwidths, 500 MHz and higher, good group delay, and the ability to handle many signal inputs. The Klystrons are expensive, are high-power only, and have narrow bandwidths in the 40 to 80 MHz range. The FET solid-state (SS) amplifiers offer low-cost solutions and include many of the features of the other technologies, though generally not for extremely high-power outputs. A general power requirement for different types of signals includes 1 W per channel for telephone signals and 1 KW per television carrier.

The losses are in dB and are negative, so they are added to the PA output power; the antenna gain is in dB and is added to the final result. Losses are summed and the EIRP for the satellite is calculated as follows:

\[
\text{EIRP} = P_t + L_{ta} + G_{ta},
\]

where

- \(P_t\) = power output of the PA (in dB),
- \(L_{ta}\) = total attenuation in the transmitter (negative),
- \(G_{ta}\) = gain of the transmitter antenna.

10.7.2 Propagation Losses

The propagating channel is calculated for the satellite data link according to the losses discussed in Chapter 1, with the major contributor being free-space loss:

\[
A_{fs} = 20\log\left(\frac{\lambda}{(4\pi R)}\right) = 20\log\left(\frac{c}{(4\pi R_f)}\right),
\]
where
\[\begin{align*}
\lambda &= \text{wavelength,} \\
R &= \text{slant range, same units as } \lambda, \\
c &= \text{speed of light, } 300 \times 10^6 \text{ m/sec, } R \text{ is in meters}, \\
f &= \text{frequency.}
\end{align*} \]

The free-space loss for a satellite system operating in the X-band is approximately 200 dB. There are other losses, depending on the conditions in the atmosphere, such as clouds, rain, and humidity, that need to be included in the link budget. These values are usually obtained from curves and vary from day to day and from region to region. Each application is dependent on the location, and a nominal loss, generally not worst case, is used for the link analysis.

10.7.3 Received Power at the Receiver

Other losses include multipath loss, which for satellite systems is generally small if the antennas are sited properly. For low-angle satellites, multipath can become a factor. In addition, the receiver also contains losses, similar to the transmitter, and these losses need to be included in the link budget. Finally, implementation and spreading losses are included. The received power at the LNA is

\[P_s = \text{EIRP} + A_{fs} + L_p + L_{ra} + G_r + L_{multi} + L_{imp} + L_{ss}. \]

where
\[\begin{align*}
\text{EIRP} &= \text{effective radiated power with respect to an isotropic radiator (in dBW),} \\
A_{fs} &= \text{free-space loss,} \\
L_p &= \text{propagation loss,} \\
L_{ra} &= \text{receiver losses,} \\
G_r &= \text{gain of the receiver antenna,} \\
L_{multi} &= \text{multipath losses,} \\
L_{imp} &= \text{implementation losses due to hardware,} \\
L_{ss} &= \text{spreading losses due to spread spectrum.}
\end{align*} \]

A typical link budget for satellite communications is provided to evaluate the trade-offs of the system and to ensure that the receivers on either end have enough signal-to noise ratio (SNR) for reliable communications (see Table 10-2).
Table 10-2 Link Budget for the Uplink from the Earth Station to the Satellite.

<table>
<thead>
<tr>
<th>Link Budget Analysis:</th>
<th>Slant Rng(Km)</th>
<th>Freq.(GHz)</th>
<th>Power(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Constants........</td>
<td>35000</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Enter Inputs...........</td>
<td>Inputs</td>
<td>Power Levels</td>
<td>Temp</td>
</tr>
<tr>
<td>Transmitter</td>
<td>Gain/Loss (dB)</td>
<td>Sig(dBm)</td>
<td>Noise(dBm)</td>
</tr>
<tr>
<td>Tran.Pwr(dBm) =</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans. line loss =</td>
<td>−0.5</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Other switches) =</td>
<td>−0.5</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Trans Ant Gain =</td>
<td>47</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Ant. Losses =</td>
<td>−1</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>EIRP</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Space Loss =</td>
<td>−198.89</td>
<td>−113.89</td>
<td></td>
</tr>
<tr>
<td>Rain Loss =</td>
<td>−0.20</td>
<td>−114.09</td>
<td></td>
</tr>
<tr>
<td>Cloud Loss =</td>
<td>−0.10</td>
<td>−114.19</td>
<td></td>
</tr>
<tr>
<td>Atm loss/etc =</td>
<td>−0.10</td>
<td>−114.29</td>
<td></td>
</tr>
<tr>
<td>Multipath Loss =</td>
<td>−2.00</td>
<td>−116.29</td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx Ant Gain =</td>
<td>47.00</td>
<td>−69.29</td>
<td></td>
</tr>
<tr>
<td>G/T dB/K</td>
<td>25.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Noise Temp at Ant.</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna Noise TA</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ant. losses =</td>
<td>−0.02</td>
<td>−69.31</td>
<td></td>
</tr>
<tr>
<td>Other switches) =</td>
<td>−0.25</td>
<td>−69.56</td>
<td></td>
</tr>
<tr>
<td>Rec. Line loss =</td>
<td>−0.25</td>
<td>−69.81</td>
<td></td>
</tr>
<tr>
<td>Total Losses LT</td>
<td>−0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF BW(MHz)**</td>
<td>100.00</td>
<td>−94.00</td>
<td></td>
</tr>
<tr>
<td>Total Noise Temp. at Rec.</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equiv. Temp. Te =</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNA Noise Fig. =</td>
<td>1.00</td>
<td>−93.00</td>
<td></td>
</tr>
<tr>
<td>LNA Gain =</td>
<td>25.00</td>
<td>−44.81</td>
<td>−68</td>
</tr>
<tr>
<td>LNA levels =</td>
<td>−44.81</td>
<td>−68.00</td>
<td>−8</td>
</tr>
<tr>
<td>Receiver Gain =</td>
<td>60.00</td>
<td>15.19</td>
<td>−8.00</td>
</tr>
<tr>
<td>Imp. Loss</td>
<td>−4.00</td>
<td>11.19</td>
<td></td>
</tr>
<tr>
<td>Detector BW</td>
<td>10.00</td>
<td>11.19</td>
<td>−18</td>
</tr>
<tr>
<td>Det. Levels =</td>
<td></td>
<td></td>
<td>−18</td>
</tr>
<tr>
<td>S/N =</td>
<td>29.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Eb/No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Eb/No</td>
<td>12 Pe = 10^x − 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coding Gain =</td>
<td>4.00</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>Eb/No Margin =</td>
<td>21.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.7.4 Carrier Power/Equivalent Temperature

Often in satellite systems, the power received by the receiver is called the carrier power \(C \). Also, this carrier power is compared to an equivalent temperature \(C/T \). A simplified form of combining the losses, dividing both sides by temperature, and converting all values to actual values (not dB) is

\[
C/T = \text{EIRP} \times G_r / (L_T \times T) = G_r / T \times \text{EIRP} / L_T,
\]

where

- \(C/T \) = carrier power/equivalent temperature,
- \(G_r / T \) = figure of merit,
- \(\text{EIRP} \) = effective isotropic radiated power,
- \(L_T \) = total losses from the EIRP of the transmitter to the receiver.

Power flux density (PFD) is used to determine the amount of power radiated by the antenna in a direction at a large distance per unit of surface area. For an isotropic radiator the equation equals

\[
PFD = P / (4\pi d^2),
\]

where

- \(PFD \) = power flux density,
- \(P \) = output power,
- \(d \) = distance.

Add the gain to this to find the PFD for a gain antenna.

With satellite’s increased power and more sensitive receivers, earth stations are becoming less costly and smaller. For example, the Intelsat V satellite contains 50 transponders on board and operates with just 5 to 10 W of power. The total bandwidth for the Intelsat V is 500 MHz to provide high-speed data for multiple users.

10.8 Multiple Channels in the Same Frequency Band

In order to utilize the band more efficiently and to provide more data or users, two different schemes are employed. The first scheme uses beam pointing at two different points on earth using the same satellite. Each beam is focused on an area of the earth so that the same antenna can be used for two systems in the same band and frequency. The narrower the beamwidth, the less coverage area that is illuminated on the earth’s surface.
However, this provides for more EIRP so that the earth stations can be less expensive.

Another way to increase the data capacity for a given band is to use polarization. If orthogonal polarizations are used for two different channels, the channels can use the same antenna and bandwidth with minimal interference to each other. In theory, horizontal and vertical polarizations are orthogonal, and left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP) are also orthogonal. Cross-polarization can occur that degrades the separation of two channels that are orthogonally polarized. Often orthogonal polarization is used to provide increased isolation between the transmitter and the receiver for transceiver operation.

In order for a system to use polarization for frequency reuse in a satellite communication system, the isolation between the channels should be at least 25 to 30 dB. The main causes that degrade the isolation are the Faraday effect (earth's magnetic field) and atmospheric effects (rain or ice crystals). Also, multipath can alter the polarization during reflection of the signals on a surface, and propagation through the troposphere or ionosphere can cause polarization disturbances.

10.9 Multiple Access Schemes

Multiple access is important in satellite communications to allow multiple users in the same bandwidth, satellite, and antenna system. There are two basic methods that are used to provide for multiple users.

The first method is a multiplexing scheme called preassigned multiple access (PAMA). This method permanently assigns a user to a channel or time. An example of PAMA is using time slots and assigning a given time slot to each end user. Since they are permanently assigned, the users will have that given time slot and will be multiplexed with all of the other users, similar to time division multiplexing (TDM) used in other communication links.

The other method of multiplexing is called demand assigned multiple access (DAMA). This method is a true multiple access scheme similar to TDMA used in other communication links. This system is used on an “as needed” basis and each user takes any time slot when needed.

Another method of providing for multiple users is frequency division multiplexing (FDM) or frequency division multiple access (FDMA). These methods use frequency division to provide for multiple users on one band. In systems that incorporate FDMA, the channels are separated using different frequency slots for different users. Other techniques to provide for multiple users are beam focusing, so that each of the beams cover a different area of the earth from the satellite, and antenna polarization, which
can separate multiple users via the polarization of the antennas, vertical versus horizontal or LHCP versus RHCP.

10.10 Propagation Delay

One of the problems with real-time communications using satellites is the large distance between the earth station and the satellite. There is an approximate propagation delay of 275 msec. The two-way propagation delay is double that time, or 550 msec. Since this propagation delay is so long, echo cancellation is vital to the quality of the communication link, especially for voice applications. Video applications, especially one-way broadcasting, generally does not need echo cancellation techniques.

10.11 Cost for Use of the Satellites

The cost is determined by the type of transmission, type of signal sent, and the length of the transmission time. The types of transmissions include PAMA, DAMA, and occasional. PAMA is the most costly, since it basically ties up an entire multiple access slot all of the time. Demand systems such as DAMA are less costly, since the access slot is assigned only when it is in use. The least costly is the occasional use, which is only billed for the time that it is used.

The types of signals that are sent using the satellite link include voice, video, and data. Many systems do not include voice as an option, with the Internet being the most important. For more information on the cost of use of satellites, see the Intelsat tariff handbook, which specifies detailed charges.

10.12 Regulations

The ITU radio regulations provide the rules for satellite communications to avoid interference and confusion. The main specifications supplied by the ITU include frequency band allocations, power output limitations from either the earth station or the satellite, minimum angles of elevation for earth station operation, pointing accuracy of antennas, etc.

10.13 Types of Satellites Used for Communications

The Inmarsat satellite system’s main use is for maritime communications for ships and shore earth stations. Currently it is being used for broadband communications and extended coverage. The satellites cover the
main bodies of water, but earth stations do not have to be located on the shore, as long as the satellites are visible. The Inmarsat satellites operate on C-band and L-band. The FSS gateway for telephone service is via the Inmarsat satellites.

Another satellite system is the Intelsat system. Intelsat provides broadband communications, including digital data, video, telephones, and other communication. There are several types of Intelsat satellites in use today.

Other satellites that cover various sections of the world are Eutelsat, which are used mainly for European countries, and PanAmSat, which are used for Central and South America countries. Each satellite's coverage needs to be evaluated for optimal performance, satellites in view, usage, and cost.

With the push toward providing broadband communications, including high-speed data and Internet connections, many companies and systems are working to develop both Ku- and Ka-band satellite communication systems. Some of these companies include Astrolink, CyberStar, SkyBridge, Spaceway, and Teledesic. These companies use geosynchronous earth orbit satellites (GEOS), low earth orbit satellites (LEOS), and hybrid satellite constellations to provide both Ka- and Ku-band operation, with data capacities ranging from 30 Gbps to systems providing much greater data capacities in the future.

Low earth orbit satellites are broken down into two subclasses: little LEOS and big LEOS. Little LEOS' orbits are from 90 minutes to 2 hours and are less than 2000 km high. They can be used for approximately 20 minutes per orbit. They operate in the frequency bands listed below:

- 137–138 MHz
- 400.15–401 MHz
- 148–149.9 MHz

Examples of little LEOS include OrbComm, Starsys, and VITA.

Some little LEOS follow a polar orbit at and altitude of 850 km and are sun synchronous, which means that the satellite passes over a certain area at the same time every day.

Big LEOS include satellite systems such as Iridium, Teledesic, Globalstar, Odyssey, ICO Global Communications, Project-P, Aries, and Ellipsat.

Another class of satellites is medium earth orbit satellites (MEOS). They orbit at an altitude of approximately 10,000 km, with a 12 hour orbit, which means that these satellites travel around the earth twice a day. They are generally 55° inclined from the equatorial plane. These types of satellites include the GPS satellites.

Geostationary satellites were discussed at length earlier in this chapter. They orbit at an altitude of approximately 35,800 km.
And finally, there are highly elliptical orbit satellites (HEOS). Since their orbits are elliptical, the perigee is approximately 500 km and the apogee is approximately 50,000 km. Their orbit time is between 8 and 24 hours for one revolution around the earth.

10.14 System Design for Satellite Communications

The main design criteria for satellites are the transponder bandwidth, EIRP, and G/T. Typical figure of merit values for 4 GHz range from 41 dB/°K using a 30 m antenna using a parametric amplifier to 23 dB/°K for a 4.5 m antenna using an FET amplifier. For a space station receiver at 6 GHz, typical figure of merit values ranges from 19 dB/°K using an FET transistor LNA providing a wide coverage area using a wide beamwidth to −3 dB/°K for a pencil beam antenna. For the earth station, the main design criteria are G/T, antenna gain, system noise temperature, and transmitted power. The overall system design criteria are operation frequency bands, modulation methods, multiple access parameters, system costs, channel capacity, and overall system performance.

10.15 Summary

Satellites are now providing extensive coverage for communications and data link operations in remote areas. The satellite connection consists of a remote earth station, a satellite, and another earth station. This triangle forms a two-way communications link to provide the remote earth station with access to all types of communications, including data links, military operations, Internet, video, voice, and data at high data rates.

There are basically four different bands that the satellite and ground systems use. They include C, X, Ku, and Ka. The latter is becoming popular for both the commercial and military sectors. A geostationary orbit is used so that the ground station tracks a fairly stationary transceiver and the satellite appears to be stationary.

A link budget is used to determine the power, gains, and losses in a system and also determines the figure of merit. Multiple access schemes are used to allow multiple users on the same band. Costs are associated with the type of system used and the length of use.

References

Problems

1. What system has the most ubiquitous infrastructure for communication systems?

2. What is the difference between a geostationary satellite and a geosynchronous satellite?

3. What phenomenon of a satellite orbit allows communication with the South Pole?
Broadband refers to technology that distributes high-speed data, voice, and video. It is used for broadband communications, networking, and Internet access and distribution, and provides a means of connecting multiple communication devices. Several generations of wireless communication products have evolved over the years and are designated as 1G (first generation) through 4G (fourth generation), and will continue to evolve.

Broadband is also used in the home to connect to the outside world without having to run new wires. In this application, information is brought to the home using different methods, including phone lines, wireless radio frequencies (RFs), fiber-optic cable, coaxial cable, and satellite links. This information generally comes into the home at a single location, therefore a means for distributing this information throughout the home is required. Along with the distribution of information, networking plays an important role in the connection and interaction of different devices in the home.

The military is investigating several networking techniques to allow multiple users in a battle scenario for communications, command, control, and weapon systems, including the Joint Tactical Radio System (JTRS) and Link 16.

11.1 Mobile Users

Wireless communications have evolved from simple analog cellular telephones to high-speed voice, data, music, and video using digital communications techniques. First generation (1G) devices provide wireless
analog voice service using advanced mobile phone service (AMPS), but do not provide any data services or Internet connection.

Second generation (2G) devices use digital communications with both voice and data capability. The data rate for 2G is from 9.6 kbps to 14.4 kbps. Several techniques are used to provide 2G communications, including code division multiple access (CDMA), time division multiple access (TDMA), global system for mobile communications (GSM), and personal digital cellular (PDC) for one-way data transmission. This type of connection does not have always-on data connection, which is important for Internet user applications.

The third generation (3G) is an enhanced version of the 2G digital communications with an increased data rate of 114 kbps to 2 Mbps, always-on data for Internet applications, broadband services such as video, music, and multimedia, superior voice quality, and enhanced roaming. The three basic forms of 3G are wideband CDMA (W-CDMA), CDMA-2000, and a time division scheme called time division synchronous code division multiple access (TD-SCDMA).

The fourth generation (4G) is forthcoming and is planned to provide a means of adapting the communication link so that it is interoperable with multiple communication techniques and higher data rates up to 1 Gbps. This is accomplished by utilizing software defined radios (SDRs) for real-time modulation changes, and possibly cognitive radio techniques that sense the environment and adjust the modulation and other parameters according to the signals present.

A summary of the four generations is shown in Table 11-1.

Table 11-1 Generations of mobile radios.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Data Rate</th>
<th>Modulation Access</th>
<th>Additional Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 G</td>
<td>Analog</td>
<td>AMPS</td>
<td>Voice, no data or internet services</td>
</tr>
<tr>
<td>2 G</td>
<td>9.6 – 14.4 kbps</td>
<td>GSM, CMDA, TDMA, PDC</td>
<td>Voice, data, no always-on for internet</td>
</tr>
<tr>
<td>3 G</td>
<td>114 kbps – 2 Mbps</td>
<td>CDMA (W-CDMA), CDMA-2000, TD-SCDMA</td>
<td>always-on for internet, video, music, multimedia, voice quality, enhanced roaming.</td>
</tr>
<tr>
<td>4 G</td>
<td>1 Gbps</td>
<td>SDRs Cognitive radios</td>
<td>Adaptation for interoperability and real time modulation changes</td>
</tr>
</tbody>
</table>

11.2 Types of Distribution Methods for the Home

There are three types of distribution methods or mediums that are used to distribute high-speed voice, data, and video throughout the home. They include transmission over power lines, transmission over phone lines, and transmission through the air using RF communications.
11.2.1 Power Line Communications

A power line communications (PLC) system modulates voice, data, and video signals and sends them over the existing alternating current (AC) power lines in the home. This method uses the infrastructure of the existing power lines inside the home and provides very broad coverage without adding additional wires. Also, since the hardware requires coupling to the power lines, but no antennas or high-frequency components, the cost of this method of implementation is low.

The power line medium itself is fairly noisy. In addition, there are several impedance mismatches caused by the different lengths of wiring and different terminations which cause peaks and nulls in the amplitude response of the spectrum (see Figure 11-1). Thus most systems use sophisticated digital transmission design methods to mitigate the problems with the medium and frequency agility to prevent operation in amplitude nulls.

![Amplitude Response](image)

Figure 11-1 Spectrum of the amplitude response of the power line.

11.2.2 Orthogonal Frequency Division Multiplexing

One of the more common techniques used for PLC is referred to as orthogonal frequency division multiplexing (OFDM) (see Chapter 2). OFDM uses multiple frequencies to send the data. Each of these frequencies is orthogonal, allowing independent detection of all the frequency channels used, with minimum interference between channels. OFDM is used in conjunction with digital modulation schemes such as binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), and quadrature amplitude modulation (QAM). This allows higher throughput of the data utilizing multiple channels in parallel and allows for a very robust system
to drop frequency channels that are being jammed or are unusable due to
the amplitude spectral response.

11.3 Home Phoneline Networking Alliance

The Home Phoneline Networking Alliance (PNA) transmits signals over
the existing telephone line infrastructure. Therefore, wherever there is a
telephone line present, voice and data can be transmitted without running
additional wires. Home PNA has two standards: 1.0 and 2.0. The 1.0 stan-
dard is capable of 1 Mbps and was released in the fall of 1998. The Home
PNA is used for shared Internet access, printer and file sharing, and net-
work gaming. The 2.0 standard increased the speed to 10 Mbps and requires
that it be backward compatible with the 1 Mbps 1.0 standard. The Home
PNA is essentially an Ethernet network that uses the telephone lines for
infrastructure. Home PNA developers plan to provide USB and Ethernet
adapters to the Home PNA network.

The data and voice are coupled to the telephone line and transmitted
to other devices via the telephone lines. This system is ideal if the existing
home has multiple telephone lines. In many homes, however, the telephone
line infrastructure does not provide a means to distribute signals into every
room in the house. This is a major limitation to Home PNA. The power line
and RF methods provide a much better solution for full coverage throughout
the home.

11.4 Radio Frequency Communications

Radio frequency is a method to distribute voice, data, and video through-
out the home. RF provides the required bandwidth to extend distribution of
high-definition television (HDTV) and other broadband signals. RF provides
good coverage in the home and provides connectivity to external wireless
devices. However, RF can be degraded by multipath and RF interference
from other RF signals.

There are several different types of modulation schemes that can be
used. One of the standards that is being developed utilizes Gaussian min-
imum shift keying (GMSK). This is a spectrally efficient direct sequence
modulation scheme that can be utilized for many types of communication
devices.

The RF solutions operate in the unlicensed industrial, scientific, and
medical (ISM) bands which include the 900 MHz, 2.4 GHz, and 5.8 GHz
bands. RF provides a wide range of coverage throughout the home; it also
allows portable wireless devices to access the home network.
Radio frequency technologies exhibit problems with multipath, blockage, and band saturation from other users, causing nulls in the amplitude spectrum and distorted signals. Spread spectrum schemes and antenna diversity can help to mitigate these problems. Networking standards are being established and verified in the areas of RF that include the IEEE 802.11 standard and Bluetooth. A summary of the different methods of networking in the home are shown in Table 11-2.

Table 11-2 Home networking systems.

<table>
<thead>
<tr>
<th>Home Networking System</th>
<th>Implementation</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Line</td>
<td>Apply Modulation A/C power lines Utilizes OFDM</td>
<td>Power lines in all rooms and garage No new wires Low cost</td>
<td>Power line noise Variable impedances and multiple terminations</td>
</tr>
<tr>
<td>Phone Line</td>
<td>Apply modulation on the telephone lines</td>
<td>Phone lines existing Low cost</td>
<td>Not all rooms have telephone lines Limited coverage</td>
</tr>
<tr>
<td>RF</td>
<td>RF modulation GMSK, ISM bands 802.11, Bluetooth, others</td>
<td>Good coverage Adaptable to external wireless devices</td>
<td>Multipath, RF interference</td>
</tr>
</tbody>
</table>

11.4.1 IEEE 802.11

The IEEE 802.11 standard specifies both the physical (PHY) layer and the medium access control (MAC) layer and has been adopted as a standard for RF networking in the home. The PHY layer can use both RF and infrared (IR). RF uses spread spectrum techniques, including either frequency hopping or direct sequence, and operates in the 2.4 GHz to 2.4835 GHz ISM band. The 802.11 standard specifies data rates of either 1 Mbps or 2 Mbps.

The MAC layer uses the carrier sense multiple access with collision avoidance (CSMA/CA) protocol. This allows multiple users in the network and reduces the chance of transmitting at the same time. Each node checks to see if the channel is being used, and if not, it transmits data. If the channel is busy, it randomly selects the amount of time that it waits before transmitting again. Since there are multiple time selections, the probability is very low that two nodes which are trying to enter the network will select the same random time slot, which further reduces the chance of collisions.

To ensure that a connection is made between two nodes, the transmitting node sends out a ready-to-send (RTS) packet and the receiving node, upon successful reception of the RTS packet, sends a response of clear-to-send (CTS), which lets the transmitting node know that it is communicating
with that particular node and not with another node. Then the transmitting node sends the data and the receiving node acknowledges reception by sending back an acknowledge (ACK) to the transmitter, which is verified by a cyclic redundancy check (CRC).

11.4.2 Bluetooth

Bluetooth (IEEE 802.15) is a standard that operates at 2.4 GHz in the ISM band (2.4–2.4835 GHz). The band allows 79 different channels with a channel spacing of 1 MHz. The band starts with 2.402 GHz, which allows for a guard band of 2 MHz on the lower band edge and ends with 2.480 GHz, which allows for a guard band of 3.5 MHz on the upper band edge. These band allocations and guard bands are the U.S. standards. Other countries may operate at slightly different frequencies and with different guard bands.

The following three types of classes deal mainly with power output and range:

- **Class 1:** +20 dBm
- **Class 2:** +4 dBm
- **Class 3:** 0 dBm

The higher the power output, the greater the range of the system. However, both Class 1 and 2 require power control to allow only the required power to be used for operation. Class 1 operation is required to reduce the power to less than 4 dBm maximum when the higher power output is not required. The power control uses step sizes from 2 dB minimum to 8 dB maximum. The standard method of power control uses a received signal strength indication (RSSI). Depending on the RSSI in the receiver, this information is sent back to the transmitter to adjust the transmitted power output.

The modulation scheme specified in the Bluetooth standard uses differential Gaussian frequency-shift keying (DGFSK) with a BT of 0.5, a modulation index between 0.28 and 0.35, a “+1” is a positive frequency deviation, and a “−1” is a negative frequency deviation. The frequency deviation is greater than 115 kHz. The symbol rate is 1 Msec/sec. Full duplex operation is accomplished using packets and time division multiplexing (TDM) (see Chapter 2), and for this application it is referred to as time division duplexing (TDD).

Frequency hopping is used for every packet, with a frequency hop rate of 1600 hops/sec, providing one hop for every packet. The packets can cover from one to five time slots, depending on the packet size. Each time slot is 625 μsec long, which corresponds to the hop rate. However, since the frequency hop rate is dependent on the packet size, if the packet is longer
than the slot size, then the hop rate will decrease according to the packet size. For example, if a packet covers five time slots, then the hop rate would be 1/5 of the 1600 hops/sec, or 320 hops/sec, which equals 3.125 msec dwell time, which equals $5 \times 625 \mu\text{sec}$.

The standard packet is made up of three basic sections: access code, header, and payload (see Figure 11-2). The access code is 72 bits long and is used for synchronization, DC offset compensation, and identification. The detection method used is a sliding correlator. As the code slides in time against the received signal, when the code matches up to the received signal, the correlation of the two produce a peak, and when that peak is greater than a set threshold, it is used for a trigger in the receiver timing.

![Figure 11-2](image)

Figure 11-2 Basic structure of a standard packet defined in the Bluetooth specification.

There are three types of access codes: channel access code, device access code, and inquiry access code. The channel access code identifies the piconet. The device access code is used for applications such as paging. The inquiry access code is for general inquiry access code (GIAC) and checks to see what Bluetooth devices are within range. The dedicated inquiry access code (DIAC) is used for designated Bluetooth units in a given range. The header is 54 bits long and determines what type of data is being sent; for example, “link control” is one of the types of data. There are a wide variety of information types specified in the Bluetooth specification. The payload is the actual data or information that is sent. Depending upon the amount of data, this can range from 0 to 2745 bits in length.

Three error correction schemes are used with Bluetooth: $\frac{1}{3}$-rate forward error correction (FEC), $\frac{2}{3}$-rate FEC, and automatic repeat request (ARQ). The 2/3 FEC is a (15, 10) shortened Hamming code. Error detection is accomplished using CRCs. The standard also specifies a scrambler or a data whitener to prevent long constant data streams (all “1”s for a period of time or all “0”s for a length of time) which cause problems in carrier and tracking loops.

The capacity of the Bluetooth standard can support an asynchronous data channel, asynchronous connectionless link (ACL), three point-to-point simultaneous synchronous voice channels, synchronous connection-oriented (SCO) links, or an asynchronous data channel and a synchronous voice channel. The synchronous voice channel is 64 kbps for quality voice in both directions. The asymmetrical speeds for Bluetooth are up to 723.2 kbps.
and 57.6 kbps on the return channel, or 433.9 kbps if both links are symmetric.

Bluetooth forms networks that are either point-to-point (PTP) or point-to-multipoint (PMP). PMP is called a piconet and consists of a master unit and up to seven slave units. The slave units can be in multiple piconets, which are called scatternets, using TDM. However, the piconets cannot be time or frequency synchronized.

The Bluetooth system is required to have a minimum dynamic range of 90 dB. The receiver for Bluetooth is required to have a minimum sensitivity of -70 dBm and needs to operate with signals up to $+20 \text{ dBm}$.

The Bluetooth and 802.11 specifications are summarize in Table 11-3. The initial Bluetooth specification was noted for its short range and was used mainly for device control applications. With the increase in power output, up to $+20 \text{ dBm}$, the range has increased to where it can be used for multiple applications. However, the data rates are limited as to what is coming in the future, especially those devices that are focused on high-speed data rates and broadband.

Table 11-3 Different RF Standards.

<table>
<thead>
<tr>
<th>RF System</th>
<th>Performance Capability</th>
<th>Frequency</th>
<th>Modulation</th>
<th>Data Rate</th>
<th>Networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.11</td>
<td>Uses either RF or infrared (IR)</td>
<td>ISM band 2.4-2.4835 GHz</td>
<td>Spread Spectrum Direct Sequence Frequency Hop</td>
<td>1 or 2 Mbps</td>
<td>CSMA/CA protocol.</td>
</tr>
<tr>
<td>WiMAX IEEE 802.16</td>
<td>RF, Ground and Mobile</td>
<td>2.5 GHz 5.8 GHz</td>
<td>64 QAM BPSK 16 QAM QPSK</td>
<td>2–4 Mbps 5.4 Mbps 15 Mbps 75 Mbps Theoretical</td>
<td>OFDMA MIMO</td>
</tr>
<tr>
<td>Bluetooth IEEE 802.15</td>
<td>FEC, ARQ, CRC Sensitivity: -70 dBm DR $= 90\text{ dB}$ Saturation: $+20\text{ dBm}$</td>
<td>ISM band 2.4-2.4835 GHz 79 channels 1 MHz spacing</td>
<td>Class 1: $+20 \text{ dBm}$ Class 2: $+4 \text{ dBm}$ Class 3: 0 dBm DGFS BT = .5 Mod Index .28 – .35 FH 1600 kbps/sec 1 hop/packet</td>
<td>Symbol Rate 1 Mbps Synchronous 64 kbps Asymmetric 723.2 kbps 57.6 kbps</td>
<td>Full Duplex TDD ACL, SCO PTP PMP</td>
</tr>
</tbody>
</table>

11.4.3 WiMAX

WiMAX is a new standard, based on the IEEE 802.16 to provide communications including voice and data. This standard uses OFDM techniques to provide a wireless alternative to the cable modem and DSLs for completing the 'last mile' connection to the home or business. In addition, many
of the implementations utilize multiple antennas for both the transmitter and the receiver. This technique is known as MIMO, or multiple antennas on the input and multiple antennas on the output. This is used to increase the data rate or provide for a more robust connection using redundancy.

11.5 Military Radios and Data Links

11.5.1 The Joint Tactical Radio System

The Joint Tactical Radio System (JTRS), sometimes referred to as “Jitters,” is a military data link system utilizing SDRs that provide interoperability on the battlefield for voice, data, and video communications. In addition, the system provides command, control, communications, computers, and intelligence (C4I), including missile guidance command, control, and communications for air-to-air, air-to-ground, and ground-to-ground systems. The JTRS provides the ability to handle multiband, multimode, and multiple channel radios. The JTRS was initially designed to cover an operating spectrum of 2 to 2000 MHz, however, this has been expanded to beyond 2000 MHz to allow higher frequency operation and provide more bandwidths for multiple users and increased data rates.

The main principle behind JTRS is to provide a software programmable radio that is interoperable with all existing legacy radios. In addition, the system needs to provide wideband networking software for mobile ad hoc networks and provide security or encryption to prevent unwanted users and jammers from entering the network. There are several challenges that face the JTRS:

- **Interoperability:** There is a need to provide interoperability with different modulation and frequency waveforms for all legacy and future radios on the battlefield. This is a challenge to be compatible with so much diversity in the current communication data links. The RF sections are the most challenging, with components such as filters, antennas, and amplifiers not being able to cover the entire frequency bandwidth. RF integrated circuits (RFICs) are being developed to help mitigate these problems. Tunable filters can be used, however, the cost generally increases with complexity. In addition, work is being done to design broadband antennas and antenna switching arrays to cover the wide band of frequencies. The modulation waveform for generation and detection is designed with SDRs that can be software and firmware programmed for different modulation/demodulation schemes.

- **Antijam:** In order to provide interoperability with multiple radios and data links, the system is required to handle a very wide bandwidth. The
wider the bandwidth for operation, the more vulnerable the system is for jammers to affect the signal integrity and performance. Unless these different types of frequencies and modulation schemes are switched from one to another, including their bandwidths, jamming could be a problem.

- Security: Encryption is required to prevent unauthorized users from entering the network. This adds complexity and cost, but is necessary to provide the security needed for military operations. One of the major problems is the lack of encryption for each of the legacy radios in the network. The system must be able to handle different encryption schemes or provide a universal encryption system.

- Cost: For several applications, especially for simple controls such as missile guidance, the size and cost of the data link is critical to the customer. With enhanced data link capability, this cost increases and it may not be practical to use a full capability data link and network protocol. The complexity of the data links used for these types of applications needs to be minimized to avoid size and cost increases.

- Networking: The network must provide interoperability for multiple communication links with different types of radios. Increases in interoperability require networking to avoid collisions of the multiple users. The network protocols have to be designed to handle different legacy radios, future radios, and possibly provide a gateway that can be used for translating different legacy radios. SDRs can be reprogrammed to provide different modulation/demodulation methods, protocols, signal processing, and operational frequencies. They can also be used to provide a network-centric gateway to translate these differences between different radios. In addition, critical networking aspects such as self-forming and self-healing in mesh-type networks are utilized to provide highly versatile, high-performance networks. Due to rapid movement on the battlefield, coupled with the joint aspect of operations with multiple users from the military, the operational network needs to be dynamic with a constant addition and subtraction of nodes. This network management needs to be real time and versatile to handle the demands and scenarios that are required by the users.

11.5.2 Software Defined Radios

Software defined radios are software programmable radios that can handle different waveforms and multiple modulation/demodulation techniques and can be modified using real-time loaded software in the field or programmed before operation. To extend the use of SDRs, a system with
the ability to sense the current waveforms and automatically adjust and adapt to the radios and environment has been developed known as cognitive radios (CRs).

Software design radios have the capability to program the current waveforms in order to be interoperable with multiple systems. This is accomplished by using digital signal processors (DSPs) or field programmable gate arrays (FPGAs) and reprogramming these devices for the waveform and modulation/demodulation processes for the desired radio or data link.

A program that combines legacy and future radios for interoperability is called the Programmable Modular Communications System (PMCS). This system utilizes SDRs as a key component in allowing software programmable waveform modulation and demodulation, encryption, signal processing, and frequency selection.

11.5.3 Software Communications Architecture

The Software Communications Architecture (SCA) is essential to the JTRS program and provides a basis for software waveforms. It is a non-proprietary, open systems architecture framework and is required to ensure operability between users. SCA compliance governs the structure and operation of the JTRS using programmable radios to load waveforms, provide the communication and data link functions, and provide networking of multiple users. The SCA standard provides for interoperability among various types of radios by using the same waveform software that can be loaded in multiple users, providing network-centric capabilities. Security is required and becomes a challenge in the overall development of the radios. Type 1 security is generally required for the development of JTRS radios. Software upgradability is also important in the development of JTRS radios, which allows new waveforms in the future to be compatible with the JTRS system.

11.5.4 JTRS Radios (Clusters)

The JTRS is designed to be interoperable with legacy data link communication systems. In addition, future growth and capabilities are incorporated to extend the ability of the system to provide new modulation and higher data rate capacities. JTRS development is broken down into five types of radios, each for a particular use and requirements:

- Ground Mobile Radio (GMR) program (Cluster 1): This effort is involved with developing radios for Army and Marine Corps ground vehicles, Air Force Tactical Air Control Parties, and Army rotary-wing applications. This also includes developing a wideband network waveform (WNW),
which is the next generation Internet protocol (IP)-based waveform to provide ad hoc mobile networking. Recently Cluster 1 has been revised for ground vehicles only and is now known as Ground Mobile Radio (GMR).

- **JTRS Enhanced Multiband Inter-/Intrateam Radio (JEM) (Cluster 2):** This effort is involved with upgrading an existing handheld radio by adding JTRS capability to an existing enhanced multiband inter-/intrateam handheld radio (MBITR). This is directed by the Special Operations Command (SOCOM). In addition, this radio is SCA compliant. A further development is a JTRS enhanced MBITR (JEM), which includes rigorous government evaluations and tests.

- **Airborne, Maritime, Fixed Site (AMF) program (Clusters 3 & 4):** Clusters 3 and 4 have been combined to form this new program. This effort will incorporate Army, Air Force, and Navy support.
 - Cluster 3 was the maritime/fixed terminal development for the Navy.
 - Cluster 4 was led by the Air Force and provided Air Force and Naval aviation radios for rotary and fixed-wing aircraft.

- **Handheld, Manpack, Small Form Fit (HMS) (Cluster 5):** This effort includes handheld radios, manpack radios, and man-portable radios that are small form fit radios for the Army’s future combat systems and other platforms such as unattended ground sensors, unattended ground vehicles, unmanned aerial vehicles (UAVs), robotic vehicles, intelligent munitions, and weapon and missile systems. These radios are under development with the Soldier Level Integrated Communications Environment (SLICE) program, which utilizes the Soldier Radio Waveform (SRW) and operates in different bands at frequencies of 450 MHz to 1000 MHz and 350 MHz to 2700 MHz. Burst data rates are from 450 kbps to 1.2 Mbps and 2 kbps to 23.4 kbps for low probability of intercept (LPI). The Mobile User Objective System (MUOS) is a cellular network that provides support for the HMS radios. This will help in UHF DAMA protocols for satellite communications.

A summary of the different JTRS radios is shown in Table 11-4.

11.5.5 Waveforms

Originally planned to span a frequency range of 2 MHz to 2 GHz, the JTRS has been expanded to frequencies above 2 GHz to satisfy space
Table 11-4 JTRS radio development.

<table>
<thead>
<tr>
<th>JTRS Radio</th>
<th>Users</th>
<th>Characteristics</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMR - Ground Mobile Radio program</td>
<td>Army and Marine Corps ground vehicles, Air Force Tactical Air Control Parties, and Army rotary-wing</td>
<td>Next generation IP-based waveform to provide ad-hoc mobile networking</td>
<td>Wideband network waveform WNW Revised for ground vehicles only: Ground Mobile Radio or GMR.</td>
</tr>
<tr>
<td>(Cluster 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEM - JTRS Enhanced Multi-Band</td>
<td>Army, Navy, Air force Special Operations Command (SOCOM)</td>
<td>Upgrade handheld radio by adding JTRS capability to an existing MBITR 30–512 MHz</td>
<td>JTRS enhanced MBITR or JEM includes rigorous government evaluations and tests</td>
</tr>
<tr>
<td>Inter/Intra Team Radio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cluster 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMF - Airborne, Maritime, Fixed Site</td>
<td>Air Force and Navy</td>
<td>For rotary and fixed wing aircraft and maritime vessels</td>
<td>Airborne Maritime Fixed-Station JTRS AMF</td>
</tr>
<tr>
<td>Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cluster 3&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMS Handheld, Manpack, Small Form Fit</td>
<td>Army Soldier Level Integrated Communications Environment (SLICE)</td>
<td>SRW 450–1000 MHz 350–2700MHz Burst data rates 450kbps–1.2Mbps LPI 2kbps–23.4kbps MUOS, DAMA</td>
<td>JTRS Manpack, JTRS HMS, unattended ground sensors and vehicles, UAVs, robotic vehicles, intelligent munitions, weapon and missile systems.</td>
</tr>
<tr>
<td>(Cluster 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Communications requirements. A selection of legacy radios for possible inclusion in the JTRS are listed in Table 11-5.

11.5.6 JTRS Network Challenge

The initial concept for the JTRS was to have all of the waveforms and networking protocols available at each JTRS radio. To do this requires high-performance DSPs, FPGAs, and a lot of memory. Generally the main obstacles are antennas and RF circuits to handle the vast differences in frequencies and bandwidth. This requires size, cost, complexity, and power. This may be acceptable for some applications, however, small size, weight, and power requirements for portable radios, manpack radios, and weapon and missile systems are critical.

11.5.7 Gateway and Network Configurations

A possible alternative to this concept is to use a gateway. The gateway provides all of this capability and can be used to translate different signals for different radio uses. The gateway has the network control, using a network system that connects all of the different users to a single point,
Table 11-5a: Types of Legacy Radios.

<table>
<thead>
<tr>
<th>Communication Link</th>
<th>Frequency of Operation</th>
<th>Modulation</th>
<th>Data Rate</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINCGARS - Single Channel Ground Air Radio System</td>
<td>30MHz–87.975 MHz</td>
<td>FM, CPFSK</td>
<td>16kbps</td>
<td>Single channel (8 possible) or FH (6 hop sets, 2320 freq/hop set)</td>
</tr>
<tr>
<td>EPLRS: Enhanced Position Location Reporting System</td>
<td>425.75–446.75 MHz</td>
<td>CP-PSK/TDMA</td>
<td></td>
<td>BW-24 MHz, Burst 825-1060 mS, 2 ms time slot, FH, 8 MHz channels, 57 kbps VHIC SIP and 228kbps VECP</td>
</tr>
<tr>
<td>HAVE QUICK II - military aircraft radio UHFCused by the Air Force</td>
<td>225–400 MHz</td>
<td>AM/FM/PSK</td>
<td>16 kbps digital voice</td>
<td>FH</td>
</tr>
<tr>
<td>UHF SATCOM</td>
<td>225-400 MHz</td>
<td>SOQPSK, BPSK, FSK, CPM</td>
<td>75kbps–56kbps</td>
<td>MIL-STD-188-181, −182, −183 and −184 protocols, DAMA</td>
</tr>
<tr>
<td>WNW - Wideband Networking Waveform</td>
<td>2 MHZ to 2 GHZ</td>
<td>OFDM, DQPSK</td>
<td>5 Mbps</td>
<td></td>
</tr>
<tr>
<td>Soldier Radio and Wireless Local Area Network WLAN</td>
<td>1.755–1.850 GHz, and 2.450–2483.5 GHz</td>
<td>TBD</td>
<td>16 kbps voice, 1 Mbps data</td>
<td>IEEE 802.11b, 802.11e and 802.11g</td>
</tr>
<tr>
<td>Link 4A</td>
<td>225–400 MHz</td>
<td>QPSK</td>
<td>5 kbps</td>
<td>TADIL C</td>
</tr>
<tr>
<td>Link 11</td>
<td>2–30 MHz and 225–400 MHz</td>
<td>QPSK</td>
<td>1364 and 2250 bps</td>
<td>TADIL A</td>
</tr>
<tr>
<td>Link 1B</td>
<td>225–400 MHz</td>
<td>FSK</td>
<td>600, 1200, & 2400 bps</td>
<td>TADIL B</td>
</tr>
<tr>
<td>Link 16</td>
<td>960–1215 MHz</td>
<td>MSK</td>
<td>2.416 kbps & data 28.8 kbps to 1.137 Mbps</td>
<td>TADIL J, Ant Diversity, FH, TDMA</td>
</tr>
<tr>
<td>Link 22</td>
<td>3–30 MHz, 225–400 MHz</td>
<td>MSK</td>
<td></td>
<td>TADIL J, Ant Diversity, FH, TDMA</td>
</tr>
<tr>
<td>VHF-AM civilian Air Traffic Control</td>
<td>108–137 MHz, 118–137 MHz</td>
<td>AM</td>
<td>Analog</td>
<td>BW-25 kHz US, 8.33 kHz European</td>
</tr>
</tbody>
</table>
Table 11-5b Types of Legacy Radios.

<table>
<thead>
<tr>
<th>Communication Link</th>
<th>Frequency of Operation</th>
<th>Modulation</th>
<th>Data Rate</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Frequency (HF) ATC Data Link</td>
<td>1.5–30 MHz</td>
<td>NA</td>
<td>300, 600, 1200 and 1800 bps.</td>
<td>Independent Side Band (ISB) with Automatic Link Establish (ALE), and HF ATC</td>
</tr>
<tr>
<td>SATURN: Second generation Anti-jam Tactical UHF Radio</td>
<td>225–400 MHz</td>
<td>PSK</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>IFF - Identification Friend or Foe. IFF/ADS/TCAS will support data at</td>
<td>1030 & 1090 MHz</td>
<td>NA</td>
<td>689.7 bps.</td>
<td></td>
</tr>
<tr>
<td>DWTS - Digital Wideband Transmission System</td>
<td>1350–1850 MHz</td>
<td>NA</td>
<td>Multiple from 144 to 2304 kbps.</td>
<td></td>
</tr>
<tr>
<td>Cellular Radio and PCS</td>
<td>824–894 MHz,</td>
<td>Various, see Features</td>
<td>10 kbps, 144/384 kbps and 2 Mbps</td>
<td>TR-45.1 AMPS, IS-54 TDMA, IS-95b CDMA, IS-136 HS TDMA and GSM and 3GSM, 2.5 G, 3G, WCDMA and CDMA-2000.</td>
</tr>
<tr>
<td>Mobile Satellite Service (MSS)</td>
<td>1.61–2 (2.5) GHz.</td>
<td>NA</td>
<td>2.4 to 9.8 kbps.</td>
<td>includes VHF and UHF MSS bands, LEOs & MEOs, Iridium, Globalstar, and others.</td>
</tr>
<tr>
<td>Integrated Broadcast Service Module (IBS-M)</td>
<td>225–400 MHz</td>
<td>NA</td>
<td>2.4, 4.8, 9.6 and 19.2 kbps</td>
<td></td>
</tr>
<tr>
<td>BOWMAN - UK Tri-Service HF, VHF and UHF tactical communications system</td>
<td>NA</td>
<td>NA</td>
<td>16 kbps digital voice</td>
<td></td>
</tr>
<tr>
<td>AN/PRC-117G - man- portable radio platform</td>
<td>30MHz–2 GHz</td>
<td>NA</td>
<td>Up to 5 Mbps</td>
<td>embedded INFOSEC capabilities.</td>
</tr>
<tr>
<td>VHF FM</td>
<td>30–88 MHz</td>
<td>FM</td>
<td>16 kbps</td>
<td></td>
</tr>
<tr>
<td>VHF AM ATC (Extended)</td>
<td>108–156 MHz</td>
<td>AM</td>
<td>16 kbps</td>
<td></td>
</tr>
<tr>
<td>VHF ATC Data Link (NEXCOM)</td>
<td>118–137 MHz</td>
<td>D8PSK</td>
<td>4.8 kbps Voice 31.5 kbps data</td>
<td></td>
</tr>
<tr>
<td>UHF AM/FM PSK</td>
<td>225–400 MHz &</td>
<td>AM/FM, PSK</td>
<td>16 kbps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>225–450 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUOS</td>
<td>240–320 MHz</td>
<td>NA</td>
<td>2.4, 9.6, 16, 32 & 64 kbps</td>
<td>support the Common Air Interface</td>
</tr>
</tbody>
</table>
Figure 11-3 *Star topology network.*

known as a star topology, and also uses the transmission control protocol (TCP) and the Internet protocol (IP) (see Figure 11-3).

Another type of network, called a bus topology network, is used to allow users to communicate directly with each other without requiring a gateway to relay the information (see Figure 11-4). All of the users are connected to a bus, and according to various protocols to avoid sending data at the same time, they are able to communicate with everyone that is connected to the bus. In addition, the bus topology can include multiple gateways, with these

Figure 11-4 *Bus topology network.*
gateways linked together in the bus network, and the users of the bus can send/receive their data to/from the gateway. The gateway then translates and sends the data to other users connected to the bus.

A ring network is another type of network that can be used which connects all of the users in a ring (see Figure 11-5). In the ring network, the data are passed around the ring, going from user to user, and if the protocol is setup to receive the message sent, then the data are received. Here again, the ring network can include multiple gateways and the users on the ring can send/receive their data to/from the gateway and the gateway would translate and send the data to other users connected to the ring.

![Ring Topology](image)

Figure 11-5 Ring topology network.

A high-performance network used in many applications is known as a mesh network. Mesh networks are used in wireless applications for both commercial and military networks. The main advantage of mesh networks is the ability to establish and maintain network continuity and route signals and links in the presence of interference and node dropouts in the network. They are able to maintain network integrity and perform real-time repair of the network during a failure without shutting down. This is known as self-forming and self-healing. They do not contain a central hub that controls each of the users, the data links are established directly between users, which reduces single point failures (see Figure 11-6).
Wireless mesh networks require minimum system administration, maintenance, and support. They are very useful in establishing networks for broadband communications. They overcome inherent connectivity limitations and provide automatic configuration and routing.

Whatever type of network is used, the main purpose is provide an overall system to communicate with many different radios and links into one big communication network. One of the steps to take in the near future is to develop interoperability; for example, making the SINCGARs radio interoperable with the HAVEQUICK II radio. From there, the system must expand and grow by adding other legacy radios, and as some of the legacy radios become obsolete, they can be replaced with SDRs.

11.5.8 Link 16

Link 16 (TADIL J) uses J messages and has been looked at to provide interoperability and networking in a complete battlefield system. This discussion addresses Link 16 Class 2, Tactical Data Link for C3I.

The Joint Tactical Information Distribution System (JTIDS) uses Link 16 as its core. The Multifunctional Information Distribution System (MIDS), with its reduced size, is used in the F/A-18 aircraft. The MIDS provides interoperability between the MIDS and JTIDS. The Army is using
JTIDS with a rate of less than 8 kbps and uses a combinational interface of the Position Location Reporting System (PLRS) and JTIDS hybrid interface. In addition, the MIDS radio has been upgraded to be compatible and interoperable with JTRS requirements and is referred to as MIDS JTRS.

Link 16 is a multiuser system with low duty cycle, pseudo-randomly distributed in the frequency code domain on a slot-by-slot basis. The range is 300 nm nominal, with the ability to extend the range to 500 nm. Any Link 16 terminal can operate as a relay to further increase the range of the system. The power output is 200 W low power and 1000 W high power if a high-power amplifier (HPA) is added to the system. The power can be reduced by eliminating both the voice channels and tactical air navigation (TACAN).

The system operates at least two antennas, for antenna diversity, to prevent multipath and jamming. The antennas used are broadband vertical antennas in the UHF (L-band) 960 MHz to 1215 MHz operating frequency range. Special filtering is added to prevent interference with the TACAN, distance measuring equipment (DME), and identification friend or foe (IFF) by using a dual-notch band-pass filter, which eliminates IFF at 1030 MHz and 1090 MHz. The frequency of operation of the Link 16 system is in two bands: UHF, 300–1000 MHz; and L-band, allocated 960–1215 MHz (969–1206 MHz) with an IF of 75 MHz.

11.5.9 Link 16 Modulation

The modulation of Link 16 is MSK. A message consisting of 5 data bits are spread at a 5 MHz rate. The 5 data bits are spread by using 32-bit cyclic code shift keying (CCSK) to produce an approximately 8 dB processing gain: $10\log(32/5)$. Link 16 also uses frequency hopping, with each message pulse on a different frequency per PN code, with up to 20 different hop PN codes to prevent mutual interference. Therefore each hop frequency contains one message which contains 5 data bits spread by 32 MSK chips. The message pulse is 6.4 μsec on and 6.6 μsec off, for a total of 13 μsec.

The data rates are variable, with rates of 28.8 kbps, 31.6 kbps, 57.6 kbps, 115.2 kbps, with a capacity up to 238 kbps, which can be expanded to 2 Mbps. In addition to data, the Link 16 provides two digital voice channels with rates of 2.4 kbps and 16 kbps.

In addition, Link 16 provides FEC. This is a Reed-Solomon (RS) FEC: (31,15). The data word is 15 five-bit characters (70 bits plus 5 bits parity) and is expanded to 31 RS characters (155 bits). If there is a need to receive more than half bits error free, then the entire message can be regenerated. FEC and interleaving across hops has the ability to correct channel bits that are lost, however, the voice channel contains no FEC.
An important part of Link 16 is encryption. The system uses COMSEC/TRANSEC, encrypted by KGV-8B. In addition, it is encrypted by using frequency hopping and jitter (the random time period the terminal waits to enter system).

11.5.10 Time Division Multiple Access

Hopped MSK pulses are assigned a time slot for TDMA, up to 60 hops/time slot at a rate of 76.923 kHps, or 1/13 μsec. The data link hops both the data and the sync pulse. The frame is 12 sec, with 1536 time slots/frame. A total of 24 hours is divided into 112.5 epochs, which is equal to 12.8 minutes each. The epochs are divided into 98,304 time slots, which equals 7.8125 msec/time slot. Access to Link 16 rotates among all users every 12.8 minutes (98,304 slots). Each cycle is an epoch and assignments are made against a 12-sec frame which repeats.

11.5.11 “Stacked” Nets

“Stacked” nets are networks that allow multiple users to occupy the same time slots because the users have different PN codes (20 total) selected for their hop sequence and some process gain due to MSK.

11.5.12 Time Slot Reallocation

Time slot reallocation (TSR) was developed for the Navy and is similar to a DAMA system, but does not have a central control station. To avoid collisions and contention access, the user waits for the next time slot if one time slot is busy.

11.5.13 Bit/Message Structure

The first pulse is the start of the time slot, called jitter, followed by the synch pulse, then the header timing pulses containing the following information:

ID
Address
Classification
FEC instructions
RS FEC for the header is (16,7) and interleaved.
The message can be single or double pulse. The standard is double pulse, with the same data in each pulse. There are additional variations to this standard. The time allocated for each part of the message is as follows:

Time slot jitter pulse = 2.418 msec
Time propagation allowed in the design = 2.040 msec
Time for the data plus header = 3.354 msec
In extended slot, jitter time is used for data; total data time = 5.772 msec.

A summary of the Link 16 performance specifications is shown in Table 11-6.

<table>
<thead>
<tr>
<th>RF System</th>
<th>Frequency</th>
<th>Modulation</th>
<th>Data Rate</th>
<th>Other Networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link 16</td>
<td>300–1000MHz</td>
<td>Spread Spectrum</td>
<td>31.6, 57.6, and 115.2 kbps</td>
<td>Stacked nets</td>
</tr>
<tr>
<td></td>
<td>960–1215MHz (969–1206MHz)</td>
<td>MSK 32chips/5bits</td>
<td>238 kbps</td>
<td>Time slot reallocation TSR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FH 1hop/message</td>
<td>capacity, expandable to 2 Mbps</td>
<td>20 different PN codes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPI, Anti-jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encryption</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Double pulse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Link 16 has been the preferred method of communication in the military arena. The challenge is for industry to generate a network design centered on this technology and determine if it is feasible to use this data link for all applications, or perhaps a subset, or possibly a totally new method for accomplishing interoperability for C4I.

11.6 Summary

Broadband and home networking will shape the future, although at this time it is unknown which of the three distribution methods will be favored or if, perhaps, a combination of all three of them will be used. New standards are being reviewed as new technologies are developed and as the data rates increase. With several incoming signals to a home, such as voice, data, and video, there is a need to provide optimal distribution throughout the home to allow for easy access.

Networking is becoming important on the military battlefield and JTRS and Link 16 play important roles in the interoperability of communication devices. The development of these technologies and other new technologies will provide the military with a network for all communication devices in the future.
References

Problems

1. What are the three mediums used in broadband distribution in the home?

2. What is a common spread spectrum scheme used in power line communications?

3. What criteria are used to determine if two signals are orthogonal?

4. Describe how the desired signal can be retrieved amongst other signals in an OFDM system.

5. What is a major drawback of Home PNA?

6. What two RF standards are mentioned in this book?

7. What is the maximum data rate of Bluetooth for a symmetrical configuration?

8. What are the three main challenges that face the JTRS?

9. How do software defined radios help to solve the interoperability problem?

10. What are the four standard network topologies?
Direction finding is a method to determine the direction of a transmitted signal by using two antennas and measuring the phase difference between the antennas, as shown in Figure 12-1. This process is called interferometry. In addition to using a static interferometer, further analysis needs to be done to calculate the direction when the interferometer baseline is dynamic; that is, the interferometer is moving and rotating in a three-dimensional plane. Thus coordinate conversion processes need to be applied to the nonstabilized antenna baseline to provide accurate measurement of the direction in a three-dimensional plane.

Figure 12-1 Basic interferometer used for direction finding.
12.1 Interferometer Analysis

For a nonstabilized antenna baseline, the elevation, roll, and pitch of the antenna baseline need to be included as part of the interferometer process for accurate azimuth determination using interferometer techniques. Therefore the azimuth angle calculation involves a three-dimensional solution using coordinate conversions and direction cosines. The overall concept is that the coordinates are moved due to the movement of the structure. The direction phasor is calculated on the moved coordinates and then a coordinate conversion is done to put the phasor on the absolute coordinates. This will become apparent in the following discussions. A brief discussion on direction cosines follows since they are the basis for the final solution.

12.2 Direction Cosines

Direction cosines provide a means of defining the direction for a given phasor in a three-dimensional plane. They are the key in defining and calculating the interferometer equations.

A phasor A is represented as

$$A = |A|(\cos \alpha i + \cos \beta j + \cos \gamma k),$$

where i,j,k are unit vectors. For example, $i = (1, 0, 0)$, $j = (0, 1, 0)$, and $k = (0, 0, 1)$ related to the magnitudes in x,y,z, respectively. For example, i is just for the x direction. Therefore, α is the angle between phasor A and the x axis, β is the angle between phasor A and the y axis, and γ is the angle between phasor A and the z axis, as shown in Figure 12-2.

The direction cosines are the cosines of each of the angles specified: $\cos \alpha$, $\cos \beta$, and $\cos \gamma$. The cosines are equal to the adjacent side, which is

![Figure 12-2](image-url)
Figure 12-2 Angles for computing the direction cosines.
the projection on the specified axis divided by the magnitude of phasor A. The projection on the x axis, for example, is simply the x component of A. It is sometimes written as comp_xA. The vector A can be described by (x,y,z). The direction cosines are defined in the same manner, with x,y,z replacing i,j,k.

Another phasor is defined and is the horizontal baseline in the earth’s plane. This is the baseline vector between two interferometer antennas. Therefore

$$B = |B| \left(\cos \alpha x + \cos \beta y + \cos \gamma z \right).$$

If $\gamma = 90^\circ$, which means that the phasor is horizontal with no vertical component, then

$$A = |A| \left(\cos \alpha x + \cos \beta y + 0 \right).$$

If the baseline is on the y axis, then

$$B = |B| \left(\cos 90^\circ x + \cos 0 y + \cos 90^\circ z \right) = |B| \left(0x + 1y + 0z \right).$$

Therefore

$$A \cdot B = |A||B| \cos \beta.$$

For this example, if the baseline interferometer is mounted on the y axis, then α is the angle from the boresight, or the x axis, to the baseline, which is the desired angle. This leads to the standard interferometer two-dimensional equation. For a two-dimensional case, this dot product equals $|A||B| \sin \alpha$, as shown in Figure 12-3.

$$\text{dp} = \frac{2\pi d}{\lambda} (\sin \theta)$$

* Figure 12-3 Standard interferometer two-dimensional equation.
12.3 Basic Interferometer Equation

The basic interferometer equation, used by many for approximate calculations, is only a two-dimensional solution, and is shown below:

\[dp = \frac{(2\pi d)}{\lambda \sin \theta}, \]

where
- \(dp \) = measured electrical phase difference (in radians),
- \(d \) = separation of the interferometer antennas,
- \(\theta \) = true azimuth angle.
- \(\lambda \) = wavelength.

Note: \(\theta \) is equal to \(\alpha \) in the previous example.

This is a familiar equation used in most textbooks and in the direction finding literature. This equation is derived by simply taking the dot product of the direction phasor and the interferometer baseline, which produces the cosine of the angle from the baseline. Using simple geometry, the relationships between the additional distance traveled for one interferometer element \((d_2) \) with respect to the baseline difference \((d_1) \) and the measured electrical phase difference \((dp) \) are easily calculated:

\[d_2 = d_1 \cos(\varphi), \]

where
- \(\varphi \) = angle of the phasor from the baseline,

and

\[dp = \frac{(d_2/\lambda)}{2\pi}. \]

where
- \(d_2 \) = extra distance traveled from the target.

Figure 12-4 shows the analysis with the baseline on the y axis.

Since the angle is usually specified from the boresight, which is perpendicular to the interferometer baseline, the equation uses the sine of the angle between the boresight and the phasor \((\theta) \), which results in the standard interferometer equation, as shown below (see Figure 12-4):

\[dp = \frac{(2\pi d_1)}{\lambda \sin \theta}. \]
This still assumes that the target is a long distance from the interferometer with respect to the distance between the interferometer elements, which is a good assumption in most cases.

This works fine for a two-dimensional analysis and gives an accurate azimuth angle with slight error for close-in targets, since $d \sin(\theta)$ is a geometrical estimate and A_1 and A_2 are assumed parallel, as shown in Figure 12-5.

12.4 Three-Dimensional Approach

If γ is not equal to 90°, then

\[
A = |A|(\cos \alpha x + \cos \beta y + \cos \gamma z)
\]
\[
B = |B|(0x + 1y + 0z).
\]

The dot product remains the same, $A \cdot B = |A||B|\cos \beta$; however, both the angles α and β change and the dot product no longer equals $|A||B|\sin \alpha$. For example, if γ is 0, α and β would be 90°. Therefore, for a given A with constant amplitude, the α and β change with γ.

If the alignment is off or there is pitch and roll, these angles change. Since the angle offsets are from the mounted baseline, then the B vector is defined with the angles offset from the B baseline, as shown in Figure 12-6. Therefore the resultant equation is

\[
B = |B|(\sin \alpha_1 x + \cos \beta_1 y + \sin \gamma_1 z),
\]
Two-Dimensional Interferometer Analysis

A \cdot B = abc\cos(\phi)

d_2/d_1 = \cos(\phi)

d_2 = d_1\cos(\phi)

dp = (d_2/\lambda)2\pi \text{ radians}

dp = (2\pi/\lambda) d_2 \text{ radians}

dp = (2\pi/\lambda) d_1\cos(\phi) \text{ radians}

\cos(\phi) = \sin(\theta)

Therefore:

dp = (2\pi d_1/\lambda)\sin(\theta) = \text{Standard 2-dimensional interferometer equation}

Figure 12-5 Two-dimensional interferometry.

where

\alpha_1, \beta_1, \gamma_1 = \text{the angles from the B desired baseline caused by misalignment or movement.}

Therefore, if the interferometer baseline is rotated, pitched, and rolled, then the results are

\[A = |A|(\cos\alpha x + \cos\beta y + \cos\gamma z) \]

\[B = |B|(\sin\alpha_1 x + \cos\beta_1 y + \cos\gamma_1 z). \]
Figure 12-6 Interferometer with the baseline vector not on the Y axis.

This B is the new phasor, offset from the earth's coordinate system:

$$A \cdot B = |A||B|(\cos\alpha x + \cos\beta y + \cos\gamma z).$$

The main solution to this problem is to find the angle from the boresight, which is a three-dimensional problem when considering the elevation angle and the dynamics of the baseline. Approaching the problem in three dimensions using direction cosines produces a very straightforward solution and the results are shown in the following analysis. The standard interferometer equation is not used and $\sin(\theta)$ is meaningless for this analysis since a two-dimensional dot product to resolve azimuth is not used. The effects that the elevation angle has on the azimuth solution are shown in Appendix C.

12.5 Antenna Position Matrix

The first part of the analysis is to define the three-dimensional interferometer coordinate system relative to the dynamic coordinate system. The definition of this axis is imperative for any analysis. For example, mounting an interferometer on a ship produces the following analysis using the y coordinate from port to starboard (starboard is positive y) with the interferometer baseline along the y axis, the x coordinate from bow to stern (bow is positive x), and the z coordinate up and down (up is positive z) (see Figure 12-7). The position matrix for the interferometer on the ship's coordinate system is defined as $\{\sin(\alpha), \cos(\beta), \sin(\gamma)\}$.
Figure 12-7 Roll and pitch definitions.

If there is a misalignment in the $x - y$ plane and not in the z plane, the position matrix is $\{\sin(\alpha), \cos(\beta), 0\}$, as shown in Figure 12-8. If there are no offsets, then the position matrix is $(0,1,0)$, which means that the interferometer is mounted along the y axis. The antenna position matrix compensates for the misalignment of the interferometer baseline with respect to the ship’s coordinate system.

Figure 12-8 Position matrix offset.
12.6 Coordinate Conversion Due to Pitch and Roll

The coordinate conversion transformations modify the antenna position matrix to obtain the earth coordinate antenna position x, y, z. This is done for yaw*, pitch, and roll. Heave is generally insignificant, but can be included for specific cases. Yaw is the movement in the horizontal plane that affects bearing, with positive yaw rotating in the clockwise direction. Pitch is the bow of the ship moving up and down, with down being in the positive direction. Roll is port and starboard movement of the ship rotating up and down, with port side down being positive. Heave is the movement of the ship as an entire unit in the vertical direction, with positive heave being up. The conversion matrices are shown in Appendix A. This example is done for 15° roll, 5° pitch, and 3° yaw. The order of the analysis is yaw, pitch, and roll. The order of the transformation needs to be specified, and different orders will alter the final solution. Further information on coordinate transformations is included in Appendix A.

The interferometer measurement is done with the ship's antenna position at the location caused by the yaw, pitch, and roll. To bring the coordinates back to earth or level coordinates, the process is done in the reverse order and opposite direction; that is, $-\text{roll}$, $-\text{pitch}$, $-\text{yaw}^*$. The movement defined as positive pitch is bow down and positive roll is port down. The negative numbers are put in the original coordinate transformations as shown:

<table>
<thead>
<tr>
<th>Roll</th>
<th>$\text{Roll} = -15^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>$\cos(r)$ $\sin(r)$</td>
</tr>
<tr>
<td>0</td>
<td>$-\sin(r)$ $\cos(r)$</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.966 -0.259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch</th>
<th>$\text{Pitch} = -5^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cos(p)$</td>
<td>$\sin(p)$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\sin(p)$</td>
<td>$\cos(p)$</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>0.996 0.087</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yaw</th>
<th>$\text{Yaw} = -3^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cos(y)$</td>
<td>$\sin(y)$</td>
</tr>
<tr>
<td>$-\sin(y)$</td>
<td>$\cos(y)$</td>
</tr>
<tr>
<td>0</td>
<td>0.999 -0.052</td>
</tr>
<tr>
<td>$\sin(y)$</td>
<td>$\cos(y)$</td>
</tr>
<tr>
<td>0</td>
<td>0.052 0.999</td>
</tr>
<tr>
<td>$\cos(y)$</td>
<td>$\sin(y)$</td>
</tr>
<tr>
<td>0</td>
<td>0.999 0</td>
</tr>
<tr>
<td>$\sin(y)$</td>
<td>$\cos(y)$</td>
</tr>
<tr>
<td>0</td>
<td>0 1</td>
</tr>
</tbody>
</table>

*Note: The yaw can be solved after taking the roll and pitch azimuth calculation and simply offsetting the angle by the amount of the yaw. This may prove simpler for implementation.
12.7 Using Direction Cosines

Now that the coordinate conversion and position matrix have been solved, the x, y, z values as a result of these processes are used with the direction cosines to achieve the solution. The basic direction cosine equation, as mentioned before, is

$$a = |a| (\cos \alpha + \cos \beta y + \cos \gamma z).$$

For a unit vector, the scalar components are the direction cosines:

$$u = \cos \alpha x + \cos \beta y + \cos \gamma z = Xx + Yy + Zz.$$

The x, y, z values are the coordinate converted and offset compensated X, Y, Z. The X, Y, Z values are the direction cosines of the Poynting vector for the horizontal baseline coordinate system. The unit vector is equal to the phase interferometer difference divided by the phase gain.

Since x, y, z are known from previous analysis, and u is measured and calculated, the direction cosines are the only unknowns and are solved by the following identities and equations:

$$(X^2 + Y^2 + Z^2)^{1/2} = 1, \text{ so } X^2 + Y^2 + Z^2 = 1.$$

Note that $Z = \cos \gamma = \sin \Psi$, since the direction cosine is defined from the top down and Ψ is the angle from the horizontal up. The elevation angle Ψ is calculated using altitude and range. Also, the effects of the earth’s surface can cause the elevation angle to have some slight amount of error. This can be compensated for in the calculation of the elevation angle and is shown in Appendix D. Therefore

$$X^2 + Y^2 + \sin^2 \Psi = 1.$$

and from above:

$$u = Xx + Yy + \sin \Psi z.$$

Solving for Y:

$$Y = (u - Xx - \sin \Psi z)/y.$$

Solving for X^2:

$$X^2 = 1 - \sin^2 \Psi - [(u - Xx - \sin \Psi z)/y]^2.$$
Solving simultaneous equations produces a quadratic equation for X in the form $AX^2 + BX + C$, where

$$[1+(x/y)^2]X^2 - [2x/y(u - z \sin \Psi)/y]X + \sin^2 \Psi - 1 + [(u - z \sin \Psi)/y]^2 = 0,$$

where

- $A = [1+(x/y)^2]$,
- $B = [2x/y(u - z \sin \Psi)/y] = -2x/y^2(u - z \sin \Psi)$,
- u = electrical phase difference (in radians) (phase interferometer difference divided by the phase gain),
- $C = \sin^2 \Psi - 1 + [(u - z \sin \Psi)/y]^2$.

Therefore, solving for X using the quadratic equation:

$$X = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$

and solving for Y:

$$Y = \frac{u - xX - z \sin \Psi}{y}$$

then the azimuth angle θ is

$$\theta = \atan(Y/X).$$

The azimuth angle using the previous analysis is shown in Figure 12-9.

\[Figure 12-9\] Baseline located on the Y axis.
The direction cosines are the values in the x and y directions in the final converted coordinate system, $Xx + Yy + Zz$. The x,y,z coordinates include the coordinate conversion constants.

An example showing the steps in producing the interferometer solution is found in Table 12-1. This is programmed into a spreadsheet for ease in changing parameters for different interferometer configurations. Other factors that are considered when determining azimuth are true north calculations and phase ambiguities, which are included in Appendix B.

12.8 Alternate Method

The above analysis was done with the X axis on the bow-stern axis and the Y axis on the port-starboard axis. If another axis is used, then the equations need to be modified to reflect the correct axis. If the X axis is on the port-starboard axis and the Y axis on the bow-stern, then a right-hand coordinate system is defined. This analysis can be used with the following changes:

1. The quadratic equation for solving x needs to be

 $$X = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

2. The azimuth angle is calculated as

 $$\phi = \tan(X/Y).$$

Note: The formula for converting the differential phase in electrical degrees to angular degrees is

$$\text{Angular_degrees} = \frac{1}{\text{phase_gain}} \times \text{differential_phase},$$

where

- angular_degrees = number of degrees in azimuth that the target is from the boresight and right of boresight is defined as positive,
- $\text{phase_gain} = \frac{2\pi d}{\text{wavelength}},$
- $\text{differential_phase} = \text{difference in phase between the two antennas}.$

This parameter is measured in electrical degrees.
Table 12-1 Interferometer analysis example

EXAMPLE: 15.5.3 DEGREES ROLL, PITCH, YAW, 45 DEGREES EL AT 24 DEGREES AZ.

<table>
<thead>
<tr>
<th>x-axis on the bow-stern axis</th>
<th>Roll= -15</th>
<th>Roll and Pitch Only:</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-axis on port-starboard axis</td>
<td>Roll Matrix</td>
<td>Pos. Mat.</td>
</tr>
<tr>
<td>Roll Matrix Pos. Mat.</td>
<td>1 0 0.0005454</td>
<td>-0.012317</td>
</tr>
<tr>
<td>x = 0</td>
<td>y = 0</td>
<td>z = 0</td>
</tr>
<tr>
<td>y = 0.9659258</td>
<td>y = 0</td>
<td>y = 0.9659258</td>
</tr>
<tr>
<td>z = 0.2578342</td>
<td>z = 0</td>
<td>z = 0.2578342</td>
</tr>
</tbody>
</table>

Pitch Matrix

<table>
<thead>
<tr>
<th>Pitch = -5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>x = 0.0225576</th>
<th>y = 0.9961947</th>
<th>z = 0.2578342</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = 0.9659258</td>
<td>y = 0</td>
<td>y = 0.9659258</td>
</tr>
<tr>
<td>z = 0.2578342</td>
<td>z = 0</td>
<td>z = 0.2578342</td>
</tr>
</tbody>
</table>

Yaw Matrix

<table>
<thead>
<tr>
<th>Yaw = -3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>x = 0</th>
<th>y = 0</th>
<th>z = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = 0.9986295</td>
<td>y = 0.052336</td>
<td>y = 0.9986295</td>
</tr>
<tr>
<td>z = 0.2578342</td>
<td>z = 0</td>
<td>z = 0.2578342</td>
</tr>
</tbody>
</table>

Roll, Pitch, Yaw

<table>
<thead>
<tr>
<th>ATAN(Y/X)</th>
</tr>
</thead>
</table>

| 0.6604613 | 0.2525685 | 20.927463 |

For an error in alignment, so that the interferometer is not lined up with the axis, the following example is shown:

Alignment Error: Inputs: Calculations:

<table>
<thead>
<tr>
<th>Angle</th>
<th>Inputs</th>
<th>Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>y = 1.312</td>
<td>y = 0</td>
</tr>
</tbody>
</table>

For an error in alignment, so that the interferometer is not lined up with the axis, the following example is shown:

Alignment Error: Inputs: Calculations:

<table>
<thead>
<tr>
<th>Angle</th>
<th>Inputs</th>
<th>Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>y = 1.312</td>
<td>y = 0</td>
</tr>
</tbody>
</table>
12.9 Summary

Interferometers use phase differencing to calculate the direction of the source of transmission. The basic mathematical tool used in interferometer calculations is the direction cosine. Direction cosines define the direction of the phasor in a three-dimensional plane. The basic interferometer equation deals with only two-dimensional analyses. The third dimension alters the two-dimensional solution significantly. This three-dimensional approach using coordinate conversion techniques to compensate for baseline rotations provides an accurate solution for the interferometer.

References

Problems

1. What is the true azimuth angle for a two-dimensional interferometer given that the operational frequency is 1 GHz, the phase difference between the two antennas is 10 radians, and the antennas are separated by 3 m?

2. Why is a three-dimensional approach required for a typical interferometer calculation?

3. Why is the $\sin \theta$ used for the elevation angle calculation?

4. Is the order of the coordinate conversion process critical? Why?
Answers

Chapter 1

1. 0 dBm is a power level of 1 milliwatt. 2 dBm is a power level of 1.58 milliwatts. 0 dBm ± 2 dBm = 1 mW ± 1.58 mW = 1 mW + 1.58 mW = 2.58 mW = 4.1 dBm and 1 mW −1.58 mW = −.58 mW can’t have negative power.

 The correct expression is: 0 dBm ± 2 dB = ±2 dBm = +2 dBm = 1.58 mW and −2 dBm = 0.58 mW.

2. 1 nW/3.16 * 316 / 6.3 * 31.6 / 2 = 0.00025 mW. 10log(.00025) = −36dBm.

 Or: −60 dBm − 5 dB + 25 dB − 8 dB + 15 dB −3 dB = −36 dBm

Figure P-2 Receiver diagram.
3. \(10\log 1\text{mW} = 0 \text{dBm} \). \(10\log(0.01\text{mW}) = -20 \text{dBm}\). Therefore, the spurious response is \(-20 \text{dBm} - 0 \text{dBm} = -20 \text{dBc}\). For \(-40 \text{dBc}\), the spur level is \(-40 \text{dBc} + 0 \text{dBm} = -40 \text{dBm} = .1 \text{µW}\).

4. The MDS will be reduced by 1.5 dB. Increase the transmitter power by 1.5 dB, reduce the losses after the power amplifier of the transmitter and before the LNA of the receiver by 1.5 dB, or reduce the noise figure of the LNA by 1.5 dB.

5. \(G_t = 30 \text{ dBi} = 10\log[n(\pi D/\lambda)^2]\). 1000 = \(n(\pi D/\lambda)^2\). Therefore, \(D = (1000/n)^{1/2} \times \lambda/\pi = (1000/5)^{1/2} \times .06\text{m}/\pi = .854\) meters

6. \(-131.8\) dB of attenuation. \(A_{fs} = 20\log[4\pi R/\lambda] \), 1 nautical mile = 1852 meters. 10 nmile = 18520 meters. \(A_{fs} = 20\log(4\pi\text{o18520}/.06) = 131.8\) dB attenuation.

7. \(K_T + 10\log(BW) + NF = -174 \text{ dBm} + 10\log(10 MHz) + 3 \text{ dB} = -101 \text{ dBm}\).

8. You must convert to actual power and use the noise factor equation and then convert the answer to dB. The results are: \(F_t = F_1 + [(F_2 + \text{Losses}) - 1]/G_1 = 1.995 + [(10 + 3.16 - 1)/10] = 3.211\): Noise Figure = \(10\log(3.211) = 5.07\) dB.

Chapter 2

1. The signal is \(\cos(.1 MHz)t\) and the LO is \(\cos(.1 MHz)t\). The transmitted signal is therefore:

\[
\cos(.1 MHz)t \cos(10 MHz)t = \frac{1}{2} \cos(10.1 MHz)t + \frac{1}{2} \cos(9.9 MHz)t
\]

The received signal using the worst case by multiplying by \(\sin(10 MHz)t\) is:

\[
\left[\frac{1}{2} \cos(10.1 MHz)t + \frac{1}{2} \cos(-9.9 MHz)t\right]\sin(10 MHz)t
\]

\[
= \frac{1}{4}[\sin(20.1 MHz)t + \sin(.1 MHz)t]
\]

\[
- \frac{1}{4}[\sin(.1 MHz)t + \sin(-19.9 MHz)t]
\]
\[
\begin{align*}
 &\frac{1}{4} \left[\sin(20.1\,MHz)t + \sin(1.0\,MHz)t \right] \\
 &- \frac{1}{4} \left[\sin(1.0\,MHz)t + \sin(-19.9\,MHz)t \right] \\
 &\frac{1}{4} \left[\sin(20.1\,MHz)t - \sin(-19.9\,MHz)t \right]
\end{align*}
\]

The desired signal frequency, \(\cos(0.1\,MHz)t\), is cancelled out.

2. The transmitted filtered waveform is as follows:
\[
\cos(0.1\,MHz)t \cos(10\,MHz)t = \frac{1}{2} \cos(10.1\,MHz)t + \frac{1}{2} \cos(9.9\,MHz)t
\]
\[
= \frac{1}{2} \cos(9.9\,MHz)t \quad \text{for filtered output.}
\]

The received signal using the worst case by multiplying by \(\sin(10\,MHz)t\) is:
\[
\frac{1}{2} \cos(9.9\,MHz)t \sin(10\,MHz)t = \frac{1}{4} \sin(19.9\,MHz)t - \frac{1}{4} \sin(1.0\,MHz)t
\]

By filtering the signal waveform, the desired signal \(\sin(0.1\,MHz)\) is retrieved.

3. The phasors are shown for the summation of two QPSK modulators to produce 8-PSK generator. The possible phases if the phasor diagram is rotated by 22.5 degrees are: 0, 45, 90, 135, 180, 225, 270, and 315. The phase between the two QPSK modulators is 45 degrees.

4. By building two QPSK modulators, and then off-setting the modulators in time so that only one QPSK modulator switches phase at one given time. This prevents the 180 degree phase shift. The 180 degree phase shift is a problem because it produces unwanted AM on the waveform since the resultant phasor travels through 0 amplitude on the transition. Since a practical system cannot process an instantaneous signal, (infinite bandwidth), then AM is present.

5. The “1” is necessary since the output of the modulo-2 adder will be “0” and never change the pattern in the shift registers, all zeros is the resultant and never changes.
6. The process gain is equal to:
\[10 \log(1 / \text{duty cycle}) = 10 \log(1/0.2) = 6.99 \text{ dB} \]

7. Since the jammer can eliminate two frequencies at a time, only half of the frequency cells can be used for the process gain:
\[10 \log(10) = 10 \text{ dB} \]

8. The only difference is that the 16QAM has two amplitude states for each phase shift producing 4 times as many resultant phasors.

9. The only difference is that the \(\pi/4 \)DQPSK only uses four phase states \((\pm 45, \pm 135) \) and D8PSK uses all eight phase states \((\pm 45, \pm 135, \pm 90, 0, 180) \) on the phasor diagram.

10. Process gain is equal to the ratio of the spread bandwidth with respect to the data bandwidth needed to process the data. Process gain in dB needs to be \(10 \times \log \) spread bandwidth/data bandwidth.

11. Implementation loss and required S/J ratio for the desired probability of error.
12. CDMA has limited jamming margin. For multiple uses, when one user is close to the base unit and another user is far away, the jamming margin is not sufficient to handle that much different in power, the close user would jam the far user. Power control is designed to adjust the powers of the users so that they are received with equal powers.

13. Digital data links can achieve perfect reconstruction of the digital waveform assuming no bit errors.

14. Differential systems are less complex and lower cost, however, the disadvantage of the differential system is that they experience more errors because they depend on the previous bit as a reference. If the previous bit is in error, then the next bit is in error.

15. MSK or CP-PSK experience minimum AM and also minimum spectral regrowth due to non-linearities of the hardware.

16. MSK can be generated by sinusoidally weighting an OQPSK or can be generated by FSK with a minimum spacing for a given data rate.

17. 16-QAM can send more data for a given bandwidth; however, it needs more SNR since the spacing of the phasors is less.

18. Some filters that are used to approach the ideal match filter are: Gaussian, raised cosine, raised cosine squared, and root raised cosines. An ideal matched filter in the time domain produces a perfect square wave in the frequency domain.

19. The reasons to use spread spectrum are: anti-jam, multiple users, multipath and low probability of intercept. A reason to not use spread spectrum is it takes more S/N if there are no jammers present due to implementation and spreading losses. Also it is more complex.

20. Hedy Lamarr.

21. Phase shift keying or PSK a continuous wave oscillator, generally the LO.

22. A shift register and an exclusive-or function.

23. Code division multiple access, CDMA, Time division multiple access, TDMA, and frequency division multiple access, FDMA.
Chapter 3

1. A circulator or a T/R switch.

2. \(G_r = 20 \log\left(\frac{V_o}{2^n}\right) - \text{MDSI} = 20 \log(1/2^8) - [-114 - 10 \log 10 + 3 + 4] = 68.8 \text{ dB} \).

3. Third-order SFDR = \(\frac{2}{3}(\text{IP}_3 + 174 - \text{NF} - 10 \log B) = \frac{2}{3}(20 + 174 - 3 - 10 \log(10 \text{ MHz})) = 80.66 \text{ dB} \).

4. \(80.66 - 10 = 70.66 \text{ dB} \).

5. \(3 \text{ dB} + 10 \text{ dB} = 13 \text{ dB} \).

6. \(1 \times 0 = 10 \text{ MHz} \\
 0 \times 1 = 12 \text{ MHz} \\
 2 \times 0 = 20 \text{ MHz} \\
 0 \times 2 = 24 \text{ MHz} \\
 3 \times 0 = 30 \text{ MHz} \\
 0 \times 3 = 36 \text{ MHz} \\
 1 \times 1 = 2 \text{ MHz, 22 MHz} \\
 1 \times 2 = 14 \text{ MHz, 34 MHz} \\
 2 \times 1 = 8 \text{ MHz, 32 MHz} \)

7. \(120 \text{ MHz}/100 \text{ MHz} = 1.2 \).

8. According to the Nyquist criteria, sample rate = \(2^*1 \text{ MHz} = 2 \text{ Msps} \).

9. Maximum phase error = \(45 - \tan^{-1}(1/2) = 18.43 \text{ degrees} \).
 Maximum amplitude error = \(6 \text{ dB} \)

10. The advantages for over-sampling the received signal is better resolution for determining the signal and better accuracy for determining the time of arrival.
 The disadvantages are generally more expensive and requires more processing for the increased number of samples taken.

11. So that the quality of the time domain square pulse signal is preserved. The result of non-constant group delay is distortion of the pulse which causes inter-symbol interference, ISI.

12. LNA stands for low noise amplifier. It is important because it is the main contributor to the noise figure of the receiver and is a direct correlation
to the link budget, 1 dB higher noise figure results in 1 dB lower link margin.

13. Aliasing occurs, where the high frequencies can alias or appear as lower frequencies and distort the design signal.

14. Each A/D bit divides the voltage range by $\frac{1}{2}$ and $\frac{1}{2}$ the voltage is equivalent to 6 dB

Chapter 4

1. Voltage controlled attenuator and a voltage controlled amplifier.

2. The RC time constant should be much larger than the period of the carrier and much smaller than the period of any desired modulating signal. The period of the carrier is $0.1 \mu s$, 1/10MHz and the desired modulating signal period is 1 μs, 1/1MHz. Therefore, the period should be about $0.5 \mu s$, 2 MHz. This will depend on how much distortion of the desire signal verse how much of the carrier is allowed through the processing.

3. The integrator provides a zero steady state error for a step response.

4. As the error approaches steady state (very slow changing error), then the gain of the integrator approaches infinity. Therefore, any small change in error will be amplified by a very large gain and drives the error to zero.

5. An integrator.

6. If the slope is non-linear, using a linear approximation causes that in some operational periods the loop gain is less or more than the approximation and the response time will be slower or faster respectively.

7. The diode is non-linear and the point where the piecewise linear connections are, the diode provides a smoothing function due to the non-linearity.

8. The integrator for the PLL is built in and does not need to be added, whereas the AGC needs to have an integrator added to the circuit.

9. They both are feedback systems. They just have different parameters that are in the feedback loop.
10. The PLL is in the lock state. This analysis does not include the capture state where the PLL has to search across a wider bandwidth to bring it into the lock state.

11. In all feedback systems, careful design needs to be done to prevent oscillations or instability.

Chapter 5

1. Weights need to be time reversed and are ±1 not 0. \(x_1 = 1, x_2 = 1, x_3 = -1, x_4 = -1, x_5 = 1, x_6 = -1, x_7 = 1\).

2. \(\left[\cos(\omega t + (0,\pi))\right]^2 = \cos^2(\omega t + (0,\pi)) = \frac{1}{2}[1 + \cos(2\omega t + 2(0,\pi))] = \frac{1}{2}[1 + \cos(2\omega t + 2\pi)] = \frac{1}{2}[1 + \cos(2\omega t + 0)].\) Therefore the phase ambiguity is eliminated. However, the frequency needs to be divided in half to obtain the correct frequency.

3. Since the chipping rate is 50 Mchips/sec(Mcps), the minimum pulse width would be 1/50 Mcps. The null-to-null bandwidth = \(\frac{2}{PW} = \frac{2}{(1/50 \text{ Mcps})} = 100 \text{ MHz}\)

4. (a) The bandwidth is unchanged.

 (b) The bandwidth is reduced by the process gain.

5. Intersymbol interference is the distortion caused by a chip or bit which interferes with the other chips or bits, usually with the adjacent chips or bits.

6. The results of the over laying traces on an oscilloscope of a PN-code.

7. Best place is the center of the eye. The worst place is transition point of the eye.

8. (a) Signal would need to be squared 3 times.

 (b) Signal would need to be squared 4 times.

9. (a) 45 degrees for 8 PSK.

 (b) 22.5 degrees for 16 PSK.

10. A two-frequency discriminator could detect the MSK waveform.
11. The MSK waveform sidelobe levels are significantly reduced. Also, side-lobes do not regenerate due to non-linearities in the system.

12. A sliding correlator and a matched filter.

13. An early/late gate.

15. SNR and bandwidth.

Chapter 6

1. Since the integral of the Probability Density Function is equal to 1 = 100% = P_{\text{wrong}} + 37%; P_{\text{wrong}} = 63%.

2. E[x] = \sum x f_x(x) = 1(.4) + 2(.6) = 1.6. The mean is equal to the E[x] = 1.6.

3. Closer to 2 because there is a higher probability that the answer is going to be 2 than 1.

4. E[x^2] = \sum x^2 f_x(x) = 1(.4) + 4(.6) = 2.8.

6. Std Dev = (var)^{1/2} = (.24)^{1/2} = .49.

7. 1 – .954 = .046 = 4.6%.

8. Increase the number of A/D bits.

9. The probability receiving 1 pulse is .98. The probability of receiving all 20 pulses is:

 .98^{20} = 66.8%.

10. Using the binomial distribution function the probability of only one error is:

 \[p(19) = \binom{20}{19} p^{19}(1 - p)^{20-19} = \binom{20}{19} (.98)^{19}(.02)^1 \]

 \[= \frac{20!}{(20-19)!19!} (.98)^{19}(.02)^1 = 26.7\% \]
Therefore, the percentage of the errors that result in only one pulse lost out of 20 is:

\[
\text{Percent (one pulse lost)} = \frac{66.8\%}{(100\% - 26.7\%)} = 48.9\%.
\]

11. The probability of error is a predicted value of what you should get given a Eb/No value, Bit error rate is the actual measurement of the system, number of errors of the total number of bits sent.

12. Parity, check sum, cyclic redundancy check CRC. CRC is the best.

13. Block codes and convolutional codes.

14. Since interference causes burst errors, interleaving disperses these errors over multiple messages so that less errors need to be corrected for a given message.

Chapter 7

1. Glint errors are angle of arrival errors and scintillation errors are amplitude fluctuations.

2. Specular multipath affects the solution the most since it is more coherent with the signal and directly changes the amplitude and phase. Diffuse multipath is a constantly changing more random signal which looks more like noise and is usually smaller in amplitude.

3. The effect of multipath at the pseudo-Brewster angle for vertically polarized signal is reduced.

4. There is basically no effect of multipath at the pseudo-Brewster angle for horizontally polarized signal. Therefore, the multipath still highly affects the incoming signal.

5. Rayleigh criteria.

6. The Rayleigh criteria is as follows:

\[
h_d \sin d < \lambda/8
\]

where

- \(h_d \) = peak variation in the height of the surface,
- \(d \) = grazing angle.
If the Rayleigh criterion is met, then the multipath is a specular reflection on a rough surface. Therefore

\[10 \sin(10) = \lambda/8 \]
\[\lambda = 80 \sin(10) = 13.89 \text{ m} \]
\[f = \frac{c}{\lambda} = \frac{3 \times 10^8}{13.89} = 21.6 \text{ MHz} \]

7. The divergence factor is the spreading factor caused by the curvature of the earth. This factor spreads out the reflecting surface. This is generally assumed to be unity since the effects are negligible for most applications, except for possibly satellites.

8. Leading edge tracking. The multipath returns are delayed from the desired return, so the radar detects the leading edge of the pulse and disregards the rest of the returns.

9. The vector addition is shown in the figure:

![Figure P7.9 Vector addition showing multipath effects.](image)

10. The power summation uses power instead of voltage. The reflection coefficient is squared to represent a power reflection coefficient.
11. Since Multipath is spatial dependent, antenna diversity uses multiple antennas at difference spatial positions. If one antenna is in a multipath null, there is a high probability that the other antennas are not and the signal is reliably received.

Chapter 8

1. A pulse jammer duty cycle is equal to 1/response time of the AGC. Therefore, with a jammer present, the AGC adjusts the gain to minimum, then the jammer turns off and it takes the response time of the AGC to recover, and then the jammer turns on again. This captures the AGC and optimizes the jammer.

2. Approximately 1 MHz.

3. The FIR filter has fixed weight values for a given filter response, and the adaptive filter uses feedback to update or adjust the weight values.

4. The unwanted sidebands during the mix down and up need to be eliminated.

5. The μ value is the gain of the feedback process.

6. Increasing the μ value does the following:
 a. Increases convergence time.
 b. Generally decreases stability.
 c. The steady state error is larger.

7. The assumption is good when the jammer is much larger that the signal, and the directional antenna has significant gain towards the desired signal and provides a reduction in J/S.

8. The assumption is bad when the jammer is not larger that the signal and the directional antenna does not provide a reduction in J/S.

9. Channelized receiver. This receiver covers the largest instantaneous bandwidth with the best sensitivity.

10. Adaptive filter.
Chapter 9

1. C/A code = 2 × 1.023 MHz = 2.046 MHz
 P code = 2 × 10.23 MHz = 20.46 MHz.

2. Theoretical process gain for C/A code using the data rate of 50 Hz =
 \[10 \log \frac{1.023 \text{MHz}}{50} = 43 \text{ dB}\].
 Theoretical process gain for P code using the data rate of 50 Hz =
 \[10 \log \frac{10.23 \text{MHz}}{50} = 53 \text{ dB}\].

3. Short length code for faster acquisition times. Slower rate code for a
 higher signal to noise in a smaller bandwidth.

4. Long length code providing a more covert signal for detection. Faster
 rate code for higher process gain against unwanted signals.

5. The narrow correlator is better accuracy of the GPS solution.

6. The narrow correlator is less stable, easier to jam due to the wider
 bandwidth required to process the signal, and provides no benefit using
 a P code receiver due to the fact that the bandwidth is already limited
 in the transmitter.

7. Jitters the clock timing, and distorts ephemeris data regarding the or-
 bits of the SV’s.

8. Carrier smoothing is using the carrier change of phase with time to
 filter the code measured range data with time.
 Carrier data is not affected by the SA, multipath, and ionospheric
 effects as much as the code is affected.

9. Common errors, for example ionospheric errors, exist in both receivers
 and are subtracted out in the solution.

10. Wavelength ambiguity and cycle slips.

11. The wavelength of the difference frequency is larger, therefore there is
 less wavelength ambiguities to search over.

12. Using one code and different delays of the same code, and exclusive-or
 them together. This generates multiple codes dependent on the delay.

Chapter 10

1. Satellite system is the most ubiquitous infrastructure since it covers the globe.

2. Geosynchronous satellites are synchronous with the earth’s rotation and geostationary satellite are geosynchronous satellites with their orbits on the equatorial plane. Therefore, they appear as if they are stationary with respect to the earth. Geosynchronous satellites usually have inclined orbits so they move around with respect to the earth.

3. The figure eight pattern around the orbital plane that increases with age of the satellites. This phenomenon allowed a point on the South Pole to see the satellites for a period of time at the bottom of the figure 8 pattern for communications.

Chapter 11

1. Power line, phone line, and RF.

2. Orthogonal Frequency Division Multiplexing OFDM.

3. The inner product is equal to zero.

4. The inner product of the signal with itself is equal to one. For orthogonal signals the inner product is zero. Therefore, taking the inner product with a duplicate of the known signal will produce only the desired signal.

5. A phone line needs to be present and not all homes have phone lines going to every room in the house.

6. 802.11 and Bluetooth.

7. 433.9 kbps.

8. Interoperability, anti-jam, and security.

9. SDRs can be programmed on the fly to produce different waveforms and modulation schemes so they can be programmed for different users.

10. Star, Bus, Ring, and Mesh.
Chapter 12

1. \(\lambda = 3 \times 10^8/1 \times 10^9 = .3 \) meters
 \(\theta = \arcsin\left(\frac{dp}{(2\pi d)/\lambda}\right) = \arcsin\left(\frac{10}{(2\pi \times .3)}\right) = 9.16 \) degrees.

2. The elevation angle affects the azimuth interferometer calculation.

3. The direction cosines are defined for the \(\cos(\alpha) \) from the top down. Therefore, the angle up is the \(\sin \theta \) where \(\theta \) is the elevation angle from the horizontal baseline.

4. The order is critical. There is a difference in the solution for the order of the coordinate conversion. For example, if the platform is pitched and then rolled, this gives a difference solution than if the platform is rolled and then pitched.
Appendix A

The following are diagrams showing the coordinate conversions for motion including heading, roll, pitch and yaw.

SHIP'S HEADING
(AFFECTS THE ROTATION IN THE X AND Y PLANE)

\[
\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2
\end{bmatrix} = \begin{bmatrix}
\cos(\text{sh}) & -\sin(\text{sh}) & 0 \\
\sin(\text{sh}) & \cos(\text{sh}) & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_1 \\
Y_1 \\
Z_1
\end{bmatrix}
\]

\[
\begin{bmatrix}
X_1 \\
Y_1 \\
Z_1
\end{bmatrix} = \begin{bmatrix}
\cos(\text{sh}) & \sin(\text{sh}) & 0 \\
-\sin(\text{sh}) & \cos(\text{sh}) & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2
\end{bmatrix}
\]
SHIP'S ROLL

(AFFECTS THE ROTATION IN THE X AND Z PLANE)

\[
\begin{pmatrix}
X6 \\
Y6 \\
Z6 \\
\end{pmatrix} =
\begin{pmatrix}
\cos(rs) & 0 & \sin(rs) \\
0 & 1 & 0 \\
-\sin(rs) & 0 & \cos(rs) \\
\end{pmatrix}
\begin{pmatrix}
X5 \\
Y5 \\
Z5 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
X5 \\
Y5 \\
Z5 \\
\end{pmatrix} =
\begin{pmatrix}
\cos(rs) & 0 & -\sin(rs) \\
0 & 1 & 0 \\
\sin(rs) & 0 & \cos(rs) \\
\end{pmatrix}
\begin{pmatrix}
X6 \\
Y6 \\
Z6 \\
\end{pmatrix}
\]
SHIP'S PITCH

(AFFECTS THE ROTATION IN THE Y AND Z PLANE)

\[
\begin{pmatrix}
X5 \\
Y5 \\
Z5
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(ps) & -\sin(ps) \\
0 & \sin(ps) & \cos(ps)
\end{pmatrix} \begin{pmatrix}
X4 \\
Y4 \\
Z4
\end{pmatrix}
\]

\[
\begin{pmatrix}
X4 \\
Y4 \\
Z4
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(ps) & \sin(ps) \\
0 & -\sin(ps) & \cos(ps)
\end{pmatrix} \begin{pmatrix}
X5 \\
Y5 \\
Z5
\end{pmatrix}
\]
SHIP'S YAW

(AFFECTS THE ROTATION IN THE X AND Y PLANE, SAME AS HEADING)

\[
\begin{pmatrix}
X4 \\ Y4 \\ Z4
\end{pmatrix} =
\begin{pmatrix}
\cos(\text{ys}) & 0 & \sin(\text{ys}) \\
0 & 1 & 0 \\
-\sin(\text{ys}) & 0 & \cos(\text{ys})
\end{pmatrix}
\begin{pmatrix}
X3 \\ Y3 \\ Z3
\end{pmatrix}
\]

\[
\begin{pmatrix}
X3 \\ Y3 \\ Z3
\end{pmatrix} =
\begin{pmatrix}
\cos(\text{ys}) & \sin(\text{ys}) & 0 \\
-\sin(\text{ys}) & \cos(\text{ys}) & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
X4 \\ Y4 \\ Z4
\end{pmatrix}
\]
Appendix B

True North Calculations

The formula used for correcting for true north is

\[\text{bearing_true}(n) = \text{Relative_bearing}(n) + \text{ships_heading}(n) \]

where:

- \(\text{bearing_true}(n) \) = The target bearing from the ship with respect to true north.
- \(\text{ships_heading} \) = The ship's heading as measured by the Ship's Inertial Navigation System or a magnetic compass.
- \(\text{Relative_bearing}(n) \) = The current target bearing relative to ship's longitudinal axis starting at the bow for zero degrees relative and rotating clockwise.

The formula to be used for correcting from true north to magnetic north is:

\[\text{bearing_mag}(n) = \text{bearing_true}(n) + \text{magnetic_variation} \]

where:

- \(\text{bearing_mag}(n) \) = The target bearing from the ship with respect to magnetic north.
- \(\text{bearing_true}(n) \) = The target bearing from the ship with respect to true north.
- \(\text{magnetic_variation} \) = the variation between magnetic north and true north. Magnetic variation may be plus or minus.
Phase Ambiguities

For an interferometer to have no phase ambiguities, the spacing between the antennas should be less than $\lambda/(2\pi)$ wavelength apart. This provides a phase gain of less than 1. Note that a phase gain of exactly 1 gives a one-to-one conversion from azimuth angle to electrical angle. Therefore, there are no phase ambiguities. If the separation is greater than 1 wavelength, giving a greater than 1 phase gain, then ambiguities exist. For example, if the separation is 2λ, then half the circle covers 360 degrees and then repeats for the second half of the circle. Therefore, a phase measurement of 40 degrees could be two spatial positions.
Appendix C

Elevation Effects on Azimuth Error

The elevation effects on the azimuth error are geometric in nature and were evaluated to determine if they are needed in the azimuth determination and to calculate the magnitude and RMS azimuth error. A simulation was done using three different angles 10, 25, and 45 degrees. The simulation sweeps from 0 to 24 degrees in azimuth angle and the error is plotted in degrees. The results of the simulations are shown in Figure C-1.

Simulated Azimuth Error at Various Elevation Angles

![Simulated Azimuth Error at Various Elevation Angles](image)

Figure C-1 Azimuth error due to elevation angle.

The azimuth error is directly proportional to the elevation angle, the higher the angle the greater the error. Also, the azimuth error is directly proportional to the azimuth angle off interferometer boresight. This analysis was performed with a horizontal interferometer baseline with no pitch.
The azimuth error at an azimuth angle of 22.5 degrees and an elevation angle of 45 degrees was equal to 6.8 degrees which is the worst case error.

The azimuth error caused by elevation angle can be calculated by:

\[
\text{Az Error} = \text{True Az} - \arcsin(\cos(\text{true el})\sin(\text{true az})/\cos(\text{assumed El angle}))
\]

\[
= 22.5 - \arcsin(\cos(45)\sin(22.5)/\cos(0)) = 6.8 \text{ degrees}
\]

For elevation compensation only, an approximate solution can be used and is shown below:

\[
d_p = \frac{(2\pi d)\sin \theta \cos \Psi}{2}
\]

where:

\[
\Psi = \text{elevation angle}.
\]

However, including roll and pitch produces a 3-dimensional analysis. Using the standard interferometer, 2-dimensional equation, and trying to compensate for the elevation, roll, and pitch, results in an very complex transcendental equation, without making too many assumptions, and is generally solved by iterative methods.
Appendix D

Earth’s Radius Compensation for Elevation Angle Calculation

The angle θ, which is the desired elevation angle, is calculated for the curved earth.

Solve for the angle alpha using law of cosines:

$$c^2 = a^2 + b^2 - 2ab\cos(\alpha)$$

$$\alpha = \cos(\frac{a^2 + b^2 - c^2}{2ab})$$

where:

- $a =$ slant range,
- $b =$ altitude of the ship plus the earth’s radius,
- $c =$ altitude of the aircraft plus the earth’s radius

Therefore:

$$\theta = \alpha - 90 \text{ deg.} = \cos(\frac{a^2 + b^2 - c^2}{2ab}) - 90 \text{ deg.}$$
Figure D-1 Earth’s radius compensation for elevation angle calculation.
Index

A/D converter, 92, 103–104, 121
access codes, 325
acknowledge ACK, 324
acoustic charge transport device, 72, 158
acoustic charge transport, 72, 158
acousto-optic device, 274
ACT, 72, 158
ACT, 72, 158
adaptive differential pulse coded modulation, 301
adaptive filter, 247–248
adaptive line enhancer (ALE), 248, 250
ADPCM, 301
AFC, 173
AGC, 96, 244
airborne, maritime, fixed site
AMF, 330
aliasing, 118–119
antenna diversity, 239–240
anti-aliasing filter, 119–120
anti-jam, 327
application specific integrated circuits (ASIC), 2
ARQ, 209, 325
asynchronous connection-less
ACL, 326
attitude control, 297–298
automatic frequency control, 173
automatic gain control, 96, 244
automatic repeat request, 209, 325
Barkhausen criteria, 152
BDF, 204
BER, 4, 91, 157, 198, 245
BERT, 198
binary phase shift keying (BPSK), 26, 48–50, 166, 168, 193, 279, 322
bit error rate tester (BERT), 198
binomial distribution function, 204
bit error rate, 4, 91, 157, 198, 245
‘bit synch’, 158
bit synchronizer, 158, 167, 178–179, 181
block codes, 211–212
Bluetooth, 324–326
Bode diagrams, 152
Boltzmann’s constant, 20, 24, 29, 109
INDEX

BPSK, 26, 48–50, 166, 168, 193, 279, 322
Bragg cell, 274
burst jammer, 210–211, 243–247
bus topology, 334–335
carrier power/equivalent temperature, 312
carrier recovery loop, 108, 158, 167–168, 174, 186
carrier sense multiple access with collision avoidance, 323
carrier smoothed code, 286–287
cassgrain antenna system, 304–306
CDF, 189–190, 192–195, 201, 203
CDMA, 79–80, 320
channelized receiver, 274–275
checksum, 206–207
chip rate, 71–72, 160–161, 183–185
chirped-FM, 78
circulator, 10, 14, 21–22, 35–37, 93
clear-to-send CTS, 324
closed loop transfer function, 137–138, 149, 152
clusters, 329
coarse acquisition C/A code, 279–280
code division multiple access, 79–80, 320
coded OFDM, 86
COFDM, 86
cognitive radios, 46–47, 328
coherent systems, 164, 199
complementary error function, 203
con-scan cross over loss, 13, 18
conscan, 13, 18, 30, 142
constellation points, 58
constraint length, 211, 220
continuity of service, 204–205
continuous phase PSK, 54, 59
control theory, 136–142
convolutional codes, 220
coorinate conversion transformations, 349
COS, 204–205
CP-PSK, 54, 59
CRC, 205, 324
cross-correlation, 73, 252, 283
crystal video receiver, 272–275
CSMA/CA, 323
cumulative distribution function, 189–190, 192–195, 201, 203
cyclic code, 219, 337
cyclic redundancy check, 205, 324
D8PSK, 46, 50, 54–56
dBi, 93, 281, 308
dBm, 5–9
delay line discriminator receiver, 273
delay-locked loop, 176, 285
demand assigned multiple access, 313
differential 8 phase shift keying (D8PSK), 46, 50, 54–56
differential 8PSK (D8PSK), 46, 50, 54–56
DAMA, 313
damping ratio, 137, 139, 141, 149–150
data polynomial, 207
del time discriminator receiver, 273
delay line discriminator receiver, 273
delay-locked loop, 176, 285
demand assigned multiple access, 313
differential 8 phase shift keying (D8PSK), 46, 50, 54–56
differential 8PSK (D8PSK), 46, 50, 54–56
differential GPS, 287–288
INDEX

differential phase shift keying (DPSK), 50
differential system, 56, 164, 166
diffuse multipath, 230, 232–234, 240
digital signal processor (DSP), 44, 122, 329
digital speech interpolation, 300
diplexers, 37
direct sequence spread spectrum, 66–77
direction cosines, 342–343
dispersive delay line, 78
distance measuring equipment DME, 337
divergence factor, 235–237
DLL, 176, 285
double difference, 292–293
DPSK, 50
DSI, 300
DSP, 44, 122, 329
DSSS, 66–77
duplexers, 37
dynamic range, 91, 93–96, 101–104, 245–246, 274, 326

\(E[X] \), 190–192, 252
early-late gate, 175–178, 283
Eb/No, 2, 4, 26–30, 50, 106, 189, 199–200, 203, 311
ECCM, 183
ECM, 182–183, 272
effective isotropic radiated power (EIRP), 9, 309, 312
effective radiated power (ERP), 14, 310
efficiency factor, 12, 19, 304
electronic counter counter measures, 183
electronic counter measures, 182–183, 272
equivalent noise temperature, 306–308
erf error function, 27, 194–195, 198, 203
erfc, 198–199, 203
error correction, 205–220
error correction, 28, 204–205, 209
error detection, 205–220
error function \((\text{erf}(x))\), 27, 194–195, 198, 203
error vector magnitude (EVM), 58
Eutelsat, 300, 312, 314–315
EVM, 58
expected value, 190–192, 252
eye pattern, 179–181
fading, 127, 129, 229
fading, 127, 129, 229
FDMA, 79–80, 313
FEC, 209–210, 325
feedback system, 127, 133, 135, 146, 152–153
field programmable gate array (FPGA), 44, 329
finite impulse response, 72, 158, 248
FIR, 72, 158, 248
first generation 1G, 319–320
fixed-satellite service, 301
focusing loss, 13, 18
forward error correction (FEC), 209–210, 325
fourth generation 4G, 320
FPGA, 44, 329
free space loss, 15, 29, 309–311
frequency division multiple access, 79–80, 313
frequency hop, 67–70, 72, 81, 89, 323, 325–326, 337
frequency shift keying (FSK), 62–63, 324
Fresnel zone, 230
INDEX

FSS, 301
full duplex operation, 324

G/T, 308, 311, 316
gain margin, 152
Galileo In-Orbit Validation Element (GIOVE), 294
gateway, 335
Gaussian distribution, 65, 190, 193–195, 198, 203
Gaussian filter, 65
Gaussian MSK, 65
generator polynomial, 207–209
GEOS, 315
geostationary, 301–303, 315–316, 397–398
geosynchronous earth orbit satellites, 315
geosynchronous orbit, 302–303
glistening surface, 233
global navigation satellite system, 279–295
global positioning system, 175, 279
global system for mobile communications, 320
GLONASS, 295
GMSK, 65
GNSS, 279
Gold codes, 75–76
GPS, 175, 279
gradient, 252, 271–272
Graham Schmidt orthogonalizer, 81
Gregorian antenna system, 306
ground mobile radio GMR, 329–330
group delay, 116–118
GSM, 320

hamming code, 217–219
handheld, manpack, small form fit
HMS, 330

hard limited Costas Loop, 172–174
high power amplifier HPA, 337
home phone line network alliance (PNA), 322
identification friend or foe
IFF, 337
IDR, 96, 104, 246
IF, 91, 125, 169, 245
IFT, 274
image frequency, 92, 94, 111–112
image reject filter, 93–94
information capacity, 185
Inmarsat, 314–315
inner product, 84–85, 267, 270, 272
instantaneous dynamic range, 96, 104, 246
instantaneous Fourier transform, 274
instantaneous frequency measurement, 273
integrated Doppler, 283, 286–287
integrator, 126, 135–136
Intelsat, 300, 312, 314–315
intercept point, 98–100, 102–103, 110
interferometer, 341–354
Interleaving, 210–211
intermediate frequency, 91, 125, 169, 245
intermods, 92, 94, 99, 110
intermodulation products, 94
internet protocol IP, 334
interoperability, 327
inter-symbol interference (ISI), 63, 116, 177, 181–182
ISI, 63, 116, 177, 181–182
jammer resistance, 69–71
jammer, 210–211, 243–275
jamming margin, 32, 70, 87, 160
jamming margin, 32, 87, 160
‘jitters’, 327
Joint Tactical Information
Distribution System JTIDS, 336–337
Joint Tactical Radio System (JTRS), 319, 327–328
JTRS enhanced multi-band inter/intra team radio JEM, 330–331
Kalman filter, 287
KCPT, 291–292
kinematic carrier phase tracking, 291–292
kTB noise, 21, 24, 109
kT_o BF, 23–24
leading edge tracking, 236, 239
least significant bit, 96
least-mean-squared (LMS) algorithm, 251–253
left hand circular polarized antenna, 81
LEOS, 315
LFSR
limiters, 21, 94
linear block codes, 212–217
linear feedback shift register, 73
linear phase, 117
linear systematic block code generator, 212
link 16, 332, 336–337
link margin, 2
LMDS, 86
LO, 39, 49, 51, 53, 61, 82, 92, 253
local multipoint distribution service, 86
local oscillator (LO), 39, 49, 51, 53, 61, 82, 92, 253
loop filter, 168, 170, 176
low earth orbit satellites, 315
low noise amplifier (LNA), 17–18, 93, 105–107, 306–308
low probability of intercept, 69, 73, 106, 110, 276, 330
LPI, 69, 73, 106, 110, 276, 330
LSB, 96
MAC layer, 323
match filter, 23, 32, 70, 72, 89, 160
maximal length sequence generator MLSG
maximally length sequence, 74–75, 220–221
maximum likelihood sequence, 220
maximum power transfer, 42–43
MDS, 10, 45, 91, 94–96
mean-square error MSE, 251, 271
medium earth orbit MEO, 294, 315
medium earth orbit satellites, 315
MEOS, 315
mesh network, 335–336
microscan receiver, 274
MIDS JTRS, 337
minimum detectable signal (MDS), 10, 45, 91, 94–96
minimum distance, 103, 213–215, 220
minimum shift keying (MSK), 54, 60–62
mispointed loss, 13, 18
Mixer spur analysis, 112–113
MLS, 220
MLS, 74–75, 220–221
mobile user objective system
MUOS, 330
modified Costas loop, 173–174
modulo-2 addition, 182
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSK, 54, 60–62</td>
</tr>
<tr>
<td>multiband inter/intra team</td>
</tr>
<tr>
<td>handheld radio MBITR, 330–331</td>
</tr>
<tr>
<td>multi-functional information distribution system (MIDS), 336–337</td>
</tr>
<tr>
<td>narrow correlator, 283–285</td>
</tr>
<tr>
<td>narrow lane, 293–294</td>
</tr>
<tr>
<td>natural frequency, 137, 141, 149–150</td>
</tr>
<tr>
<td>noise figure, 20, 23–25, 93, 102–104, 107, 306</td>
</tr>
<tr>
<td>noise immunity, 57–58</td>
</tr>
<tr>
<td>normal distribution, 193, 198</td>
</tr>
<tr>
<td>Nyquist criteria, 119, 122, 253</td>
</tr>
<tr>
<td>16-offset quadrature amplitude modulation, 56–57</td>
</tr>
<tr>
<td>16-OQAM, 56–57</td>
</tr>
<tr>
<td>OFDM, 83–86</td>
</tr>
<tr>
<td>offset-QPSK, 52</td>
</tr>
<tr>
<td>open loop transfer function, 148–149, 152</td>
</tr>
<tr>
<td>OQPSK, 52</td>
</tr>
<tr>
<td>orthogonal frequency division multiplexing, 83–86</td>
</tr>
<tr>
<td>orthonormal basis function, 267</td>
</tr>
<tr>
<td>$\pi/4$ differential QPSK, 54</td>
</tr>
<tr>
<td>PAMA, 313</td>
</tr>
<tr>
<td>PanAmSat, 315</td>
</tr>
<tr>
<td>parabolic dish antenna, 12, 19</td>
</tr>
<tr>
<td>parallel-concatenated convolutional codes, 223</td>
</tr>
<tr>
<td>parity, 205–206</td>
</tr>
<tr>
<td>path loss, 15, 29, 309–311</td>
</tr>
<tr>
<td>payload, 325</td>
</tr>
<tr>
<td>PCC, 223</td>
</tr>
<tr>
<td>PDC, 320</td>
</tr>
<tr>
<td>PDF, 189–190, 195, 201</td>
</tr>
<tr>
<td>permanently assigned multiple access, 313</td>
</tr>
<tr>
<td>personal digital cellular, 320</td>
</tr>
<tr>
<td>phase ambiguity, 171–172, 293</td>
</tr>
<tr>
<td>phase lock loop, 23, 27, 109, 125–153</td>
</tr>
<tr>
<td>phase margin, 153</td>
</tr>
<tr>
<td>phase noise, 109</td>
</tr>
<tr>
<td>phase shift generators, 66</td>
</tr>
<tr>
<td>phase-shift keying (PSK), 26–27, 48, 300, 322</td>
</tr>
<tr>
<td>phasor constellation, 57–58</td>
</tr>
<tr>
<td>PHY layer, 323</td>
</tr>
<tr>
<td>piconet, 326</td>
</tr>
<tr>
<td>PLC, 321</td>
</tr>
<tr>
<td>PLL, 23, 27, 109, 125–153</td>
</tr>
<tr>
<td>PN-code, 294</td>
</tr>
<tr>
<td>point-to-multipoint PMP, 326</td>
</tr>
<tr>
<td>point-to-point PTP, 326</td>
</tr>
<tr>
<td>polarity loop, 174</td>
</tr>
<tr>
<td>polarization mismatch, 13</td>
</tr>
<tr>
<td>position location reporting system (PLRS), 337</td>
</tr>
<tr>
<td>position matrix, 347–349</td>
</tr>
<tr>
<td>power amplifier, 4–5, 9–12, 14, 38, 42, 60, 309, 337</td>
</tr>
<tr>
<td>power control, 86–87</td>
</tr>
<tr>
<td>power flux density, 312</td>
</tr>
<tr>
<td>power line communications, 321</td>
</tr>
<tr>
<td>power spectral density, 26, 77, 109, 198</td>
</tr>
<tr>
<td>PPM, 73, 158, 162–164, 199</td>
</tr>
<tr>
<td>precision P-code, 279, 281</td>
</tr>
<tr>
<td>primary focus antenna system, 304</td>
</tr>
<tr>
<td>PRN, 280</td>
</tr>
<tr>
<td>probability density function, 189–190, 195, 201</td>
</tr>
<tr>
<td>probability of bit error, 27</td>
</tr>
<tr>
<td>probability of detection, 199–204</td>
</tr>
<tr>
<td>probability of error curves, 2, 50</td>
</tr>
<tr>
<td>probability of error, 198–199</td>
</tr>
<tr>
<td>probability of false alarms, 199–204</td>
</tr>
</tbody>
</table>
INDEX

programmable modular communications system PCMS, 329
programmable modular communications systems PMCS, 329
PSD, 26, 77, 109, 198
pseudo noise code, 294
pseudo-Brewster angle, 230–231
pseudo-random code, 66, 77, 160
pseudo-random noise code number, 280
PSG, 66
PSK, 26–27, 48, 300, 322
pulse position modulation, 73, 158, 162–164, 199
puncturing, 223
QPSK, 27, 50–52, 183, 300, 322
quadrature phase shift keying (QPSK), 27, 50–52, 183, 300, 322
quantization error, 23, 121, 195–198
radio frequency, 2, 36, 92, 125, 245, 300, 322–323
raised cosine filter, 65, 169
raised cosine square filter, 64
Rayleigh criteria, 193, 232–234, 240
ready-to-send RTS, 324
received signal strength indication, 324
receiver coding gain, 28
receiver implementation loss, 22–23
receiver noise, 21, 24, 30, 105–106
recursive systematic code, 223
Reed-Solomon code, 28, 219, 337
refractive loss, 13, 18
relative GPS, 289–291
RF integrated circuits RFICs, 327
right hand circular polarized antenna, 81
ring topology, 335
root locus, 139–140, 150–151
root raised cosine filter, 65, 169
root sum squared (RSS), 197
roughness factor, 234–235
RSC, 223
RSS, 197
RSSI, 324
S/J, 70, 244
sampling error, 195–198
SATCOM, 332
satellite communications, 297–316
SAW, 72, 115, 274
scanning superheterodyne receiver, 273–274
SCAT-1, 46
scattering coefficient, 232, 234, 237–238
scatternets, 326
scintillation, 229
scramblers/descramblers, 182
SDR, 44, 46–47, 320, 328–329
second generation 2G, 320, 333
selective availability, 285
self-forming, 328, 335
self-healing, 328, 335
SFDR, 98
Shannon limit, 185
shape factor, 114–116
signal-to-jam ratio, 70, 244
sky temperature, 24
slant range, 15, 28, 42, 310, 378
sliding correlator, 70–72, 158, 167, 174, 176–177, 182, 186, 280, 282, 325
smooth reflection, 230, 232, 234
INDEX

software communications architecture SCA, 329
software defined radio (SDR), 44, 46–47, 320, 328–329
soldier radio waveform SRW, 330–331
space vehicle identification, 280
special category 1, 46
special operations command SOCMM, 330
spectral lines, 76–77
spectral regrowth, 59–60
specular multipath, 230–231, 234, 239–240
spread spectrum loss, 32
SQPSK, 52
squaring loop, 168–171
“stacked” nets, 338
staggered-QPSK, 52
standard deviation, 192–194, 197–198, 203
star topology, 334
superheterodyne receiver, 91–93
surface acoustic wave device, 72, 115, 274
SVID, 280
symbol synchronizer, 177–179
synchronous connection-oriented SCO, 326
syndrome generator, 213–214
T/R switch, 10, 37, 92–93
tactical air navigation TACAN, 337
tangential sensitivity, 95–96, 104–105
TDM, 79, 86, 313, 324
TDMA, 79–80, 161, 300, 320, 338
third generation 3G, 320
time division duplexing (TDD), 324
time division multiple access,
79–80, 161, 300, 320, 338
time division multiplexing, 79, 86, 313, 324
time of arrival, 158, 196, 236, 282
time-division synchronous code division multiple access
TD-SCDMA, 320
time hopping, 77
TOA, 158, 196, 236, 282
transmission control protocol (TCP), 334
transmit/receive control, 37
traveling wave tube amplifier (TWTA), 5
trellis diagram, 221–222
TSS, 95–96, 104–105
turbo codes, 222–223
unmanned aerial vehicle UAV, 330–331
upconversion, 36, 38–40, 253–254, 257
variance, 2, 191–193, 196–197, 203, 287
vector OFDM, 86
vertical dipole antenna, 11, 37
very small aperture terminal, 304
Viterbi algorithm (VA), 220–221
voltage standing wave ratio,
41–43
VSAT, 304
VSWR, 41–43
WAAS, 279
wide area augmentation system, 279
wide lane, 293–294
WiMAX, 326
Now in a 3rd edition, this successful book provides an intuitive approach to transceiver design, allowing a broad spectrum of readers to understand the topics clearly. It covers a wide range of data link communication design techniques, including link budgets, dynamic range and system analysis of receivers and transmitters used in data link communications, digital modulation and demodulation techniques of phase-shift keyed and frequency hopped spread spectrum systems using phase diagrams, multipath, gain control, an intuitive approach to probability, jamming reduction method using various adaptive processes, global positioning systems (GPS) data link, and direction-finding and interferometers, plus a section on broadband communications and home networking. Various techniques and designs are evaluated for modulating and sending digital data. Thus readers gain a firm understanding of the processes needed to effectively design wireless data link communication systems.

KEY FEATURES

» Provides an understanding of concepts in wireless, data link, and digital communication techniques for both commercial and military sectors.

» Covers digital modulation, spread spectrum modulation and demodulation, link budgets, error detection and correction, probability applications, and a broad coverage of all the elements that make up a digital modulated data link.

» Includes extra topics such as: adaptive process to mitigate narrow band jammers in a broadband communications link, GPS, multipath, and satellite communications. Also includes Link 16, JTRS, military radios, networking link budgets, Eb/No, BER, Pe, direct sequence spread spectrum transmitters, PN code generators, DSPs, AGC, pulsed matched filters, PPM, CDMA, carrier recovery, matched filters & sliding correlators, eye pattern, phase detection, Gaussian processes, quantization error, anti-jam, adaptive filters, intercept receivers, GPS.