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Abstract 
 
Certain subtleties concerning the work done by a time-dependent force field are discussed. In 
particular, it is explained why such a field cannot be conservative even if it is irrotational and 
its region of action has the proper topological properties.  
 
 

1.  Introduction 
 
In a previous article [1] a common misconception regarding the electromotive force 
(emf) of electrodynamics was discussed. Specifically, it was explained why it is incor-
rect to define the emf as work (per unit charge), in general. In simple terms, the emf is 
always determined for a given instant of time, whereas in determining the work of a 
force field on a particle (here, an electric charge) moving along a space curve, time is 
allowed to flow during the motion. Of course, there are exceptional situations where 
the emf of a circuit does indeed coincide in value with work per unit charge for a 
complete tour around the circuit [1].  
      From the point of view of classical mechanics the case of time-dependent forces 
and their work constitutes an interesting problem. In the present article we highlight 
certain aspects of this problem, focusing on subtleties that arise when one goes be-
yond the comfortable case of static force fields. Of course, the subject of time-
dependent forces and associated potentials is discussed in many standard textbooks of 
mechanics (see, e.g., [2-5]). Our aim here is to extend the discussion in these sources 
by adding a few comments that may help the student to further clarify the situation.  
      In Section 2 we define the work done by a time-dependent force field on a test 
particle and point out certain subtle points of this definition.  
      In Sec. 3 we discuss the relation between irrotational and conservative force 
fields. We explain why time-dependent fields cannot be conservative and do not lead 
to conservation of total mechanical energy.  
 

2.  Work along a space curve  
 
Consider a test particle of mass m moving in a region of space permeated by a force 
field F

�
. The particle is assumed to move along a space curve L extending from point 

A to point B (Fig. 1). We call r
�

 the position vector of m on L at time t, relative to the 
origin O of some inertial reference frame, and we denote by d r

�
 the elementary dis-

placement of m along L in an infinitesimal time interval dt.  
 

                                                 
1 This article is an addendum to the published article [1].  
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Figure 1 
 
      The work done by the field F

�
 on m from A to B is  

 

                                                          
L

W F d r= ⋅∫
� �

        (1) 

 
To compute the line integral in (1) one needs to have a mathematical description of 
the curve L. Of course, a parametric representation of L is possible by using any con-
venient parameter whose values correspond to the various points r

�
 of L. However, a 

mere geometrical description of L may not be sufficient in order to specify the work 
W, since it may be important to take into account the time at which the particle m 
passes through any given point of the curve. Thus, the most faithful parameterization 
of L in this regard is provided by the equation of motion of m, connecting the position 
r
�

 of the particle with the time t at which the particle passes from that position.  
      Let us assume the following mathematical description of the motion of m along 
the trajectory L:  
 

                          0 1( ) ;r t t t tφ= ≤ ≤
��

   with   0 1( ) , ( )A Bt r t rφ φ= =
� �� �

      (2) 

 

Then, ( ) ( )d r d t t dtφ φ ′= =
� ��

. The complexity of the integration (1) now depends on the 

nature of the force field F
�

; specifically, the dependence or not of this field on time.  

      For a static force field ( )F r
� �

, we have:  
 

                                                 ( )( )1

0

( )
t

t
W F t t dtφ φ′= ⋅∫

� ��
                 (3) 

 
This quantity is independent of the parameterization of the curve L, i.e., independent 
of the specific functional dependence of r

�
 on t as expressed by (2). Indeed, the sub-

stitution ( )t rφ =
� �

 transforms the integral (3) into  
 

                                                       ( )
B

A
W F r d r= ⋅∫

� � �
          (4) 

 
Evidently, the integral on the right depends only on the geometry of the space curve L, 
not on the specific parameterization of this curve. In conclusion,  
 

in a static force field, work is a well-defined quantity depending on the path 
followed by the particle in the field.  

 
      Things become a lot more complicated in the case of a time-dependent force field 

( , )F r t
� �

. The work on the particle m along the curve L is written  
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                                              ( , )
B

L A
W F d r F r t d r= ⋅ = ⋅∫ ∫

� �� � �
       (5) 

 
It should be noted carefully that, inside the integral, the variables r

�
 and t are not in-

dependent of each other since the former is a function of the latter through the param-
eterization (2) of L, i.e., in accordance with the specific equation of motion of m along 
L. Relation (5) is written  
 

                                                ( )( )1

0

, ( )
t

t
W F t t t dtφ φ′= ⋅∫

� ��
               (6) 

 

This time the substitution ( )t rφ =
� �

 will not eliminate t in favor of r
�

. Thus, the work 
W is no longer independent of the parameterization of the curve L by the equation of 
motion of m. The sole geometry of L is not sufficient in order to determine W !  

      To understand this better, consider the elementary work dW F d r= ⋅
� �

. In the case 

of a static force field, this is written ( )dW F r d r= ⋅
� � �

. For a given equation of motion 

of the form (2), dW depends only implicitly on t through the relation ( )r tφ=
��

. Thus, 
for a given elementary displacement of the particle along L, dW depends solely on the 
position r

�
 of m on the curve, not on the time at which the particle passes by that posi-

tion. As t varies from t0 to t1 , the position vector r
�

 traces out all curve points from A 
to B. Eventually, the total work W, given by (4), has a well-defined value independent 
of the parameterization of L. This work depends only on the geometry of the trajec-
tory L connecting A and B.  
      On the other hand, in the case of a time-dependent force field the elementary work 

is of the form ( , )dW F r t d r= ⋅
� � �

. Here, dW depends explicitly on t. Thus, for a given 
elementary displacement along L, dW depends not only on the position of the particle 
on L but also on the time the particle passes from that position. This, in turn, depends 

on the equation of motion ( )r tφ=
��

, i.e., on the specific parameterization of L. There-
fore the total work (5) is not a uniquely defined quantity but depends on the equation 
of motion along L.  
 

3.  Conservative and irrotational fields 
 

Let ( )F r
� �

 be a static force field. Generally speaking, this field is conservative if the 
work it does on a test particle m is path-independent, or equivalently, if  
 

                                                       ( ) 0
C

F r d r⋅ =∫
� � �

�                (7) 

 
for any closed path C within the field.  
      Let S be an open surface bounded by a given closed curve C in the field (Fig. 2). 
By Stokes’ theorem and by Eq. (7),  
 

                                          ( ) ( ) 0
C S

F r d r F da⋅ = ∇× ⋅ =∫ ∫
���� � �� �

�         (8) 
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In order for this to be true for every S bounded by C, the field ( )F r
� �

 must be irrota-
tional :  
 

                                                             0F∇× =
� �

            (9) 
 

S

C

dr
�

da
da
���

 
 

Figure 2 
 

      Conversely, an irrotational force field ( )F r
� �

 will also be conservative in a region 
of space that is simply connected [6,7]. Indeed, given any closed curve C in such a 
region, it is always possible to find an open surface S having C as its boundary. Then, 
if (9) is valid, the force is conservative in view of (8).  

      Given a conservative force field ( )F r
� �

, there exists a function ( )U r
�

 (potential en-
ergy of the particle m) such that  
 

                                                            F U= − ∇
� �

                   (10) 
 
The work W from point A to point B in the field is then equal to  
 

                                       ( ) ( ) ( )
B

A BA
W F r d r U r U r= ⋅ = −∫

� � � � �
                 (11) 

 
      As is well known (and as will be shown analytically below) the total mechanical 
energy of m is constant during the particle’s motion inside the force field. This energy 
is the sum E=T+U of the kinetic energy T=mv2/2 (where v is the speed of the particle) 
and the potential energy U.  

      Consider now a time-dependent force field ( , )F r t
� �

 in a simply connected region Ω 
of space. This field is assumed to be irrotational for all values of t :  
 

                                                          ( , ) 0F r t∇× =
� � �

                  (12) 
 
Can we conclude that the field F

�
 is conservative?  

      It is tempting but incorrect (!) to argue as follows: Let C be an arbitrary closed 
curve in Ω. Since Ω is simply connected, there is always an open surface S bounded 
by C. By Stokes’ theorem,  
 

                                         ( , ) ( ) 0
C S

F r t d r F da⋅ = ∇× ⋅ =∫ ∫
���� � �� �

�                    (13) 

 
for all values of t. This appears to imply that F

�
 is conservative. This is not so, how-

ever, for the following reason: For any fixed value of t, the integral  
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( ) ( , )
C

I t F r t d r= ⋅∫
� � �

�  

 
does not represent work. Indeed, I(t) expresses the integration of a function of two 
independent variables, r

�
 and t, over one of these variables (namely, r

�
), the other 

variable (t) playing the role of a “parameter” of integration which remains fixed. 
Thus, I(t) is evaluated for a given instant of time t and all values of F

�
, at the various 

points of C, must be recorded simultaneously at t.  
      On the other hand, in the integral representation of work,  
 

( , )
C

W F r t d r= ⋅∫
� � �

�  , 

 
time is assumed to flow as the test particle m travels along the closed curve C. In this 
case, r

�
 and t are no longer independent of each other but are connected through the 

equation of motion of m on C, which equation mathematically endows C with a cer-
tain parameterization. This complication never arises in the case of static fields, as we 
saw previously. We may thus conclude that  
 

a force field that is both static and irrotational in a simply connected region of 
space is conservative; a time-dependent force field cannot be conservative 
even if it is irrotational and its region of action is simply connected.  

 
      Finally, let us explain why a time-dependent force field does not lead to conserva-

tion of total mechanical energy. Consider again an irrotational force field ( , )F r t
� �

 [as 
defined according to (12)] in a simply connected region Ω. Then there exists a time-
dependent potential energy ( , )U r t

�
 of m, such that, for any value of t,  

 

                                                    ( , ) ( , )F r t U r t= − ∇
� �� �

                     (14) 
 

This time we will assume that ( , )F r t
� �

 is the total force on m. By Newton’s 2nd law, 
then,  

(where / ) 0
dv dv

m F v d r dt m U
dt dt

= = ⇒ +∇ =
� �
� �� �

 . 

 
Taking the dot product with v

�
, we have:  

 

0
dv

mv v U
dt

⋅ + ⋅∇ =
�

�� �
 . 

Now,  
21 1

( ) ( ) ( | | )
2 2

dv d d
v v v v v v

dt dt dt
⋅ = ⋅ = =
�

� � � �
 

and  
U

dU dt
U d r dU Ut

v U
dt dt dt t

∂
−

∇ ⋅ ∂∂
⋅∇ = = = −

∂

� �
��
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where we have used the fact that ( , )
U

dU r t U d r dt
t

∂
= ∇ ⋅ +

∂

�� �
. Hence, finally,  

 

21
0

2

d dU U
mv

dt dt t

∂  + − = ⇒  ∂ 
 

 

                                                       ( )
d U

T U
dt t

∂
+ =

∂
                      (15) 

 
where T=mv2/2. As seen from (15), the total mechanical energy (T+U) of m is not 
conserved unless ∂U/∂t=0, i.e., unless the force field is static.  
      Note that, for a time-dependent irrotational force field [defined according to (12)] 
the quantity  
 

                                       ( , ) ( , ) ( , )
B

A BA
F r t d r U r t U r t⋅ = −∫
� � � � �

,     

 
defined for any fixed t, does not represent the work done by this field on a particle m 
from A to B [comp. (11) for the case of a static force field]. That is,  
 

the work of a time-dependent irrotational force field cannot be expressed as 
the (negative) difference of the values of the corresponding time-dependent 
potential energy at the end points of the trajectory of a particle.  

 

4.  Summary 
 
Let us summarize our main conclusions:  
      1. In a static force field, the work done on a test particle is a well-defined quantity 
that depends on the geometrical characteristics of the particle’s trajectory in the field.  
      2. In a time-dependent force field, the geometry of the trajectory is not sufficient 
in order to determine work: one must also know the precise equation of motion of the 
particle along this trajectory, connecting the position of the particle with time. Thus, 
work is not a uniquely defined quantity in this case.  
      3. A static force field that is irrotational in a simply connected region of space is 
conservative.  
      4. A time-dependent force field cannot be conservative even if it is irrotational and 
its region of action has the proper topology.  
      5. The work of a time-dependent irrotational force field cannot be expressed as the 
difference of the values of the time-dependent potential energy at the end points of the 
trajectory of a particle.  
      6. Time-dependent force fields are incompatible with conservation of total me-
chanical energy.  
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