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MATHEMATICAL FORMULAS AND PROPERTIES 
 
 

Trigonometric formulas 
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Basic trigonometric equations 
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Hyperbolic functions 
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Power formulas 
 

2 2 2

3 3 2 2 3

2 2

3 3 2 2

1 2 2 3 3

( ) 2

( ) 3 3

( )( )

( )( )

( 1) ( 1)( 2)
( ) ( 1,2,3, )

2! 3!
n n n n n n

a b a ab b

a b a a b ab b

a b a b a b

a b a b a ab b

n n n n n
a b a na b a b a b b n− − −

± = ± +

± = ± + ±

− = + −

± = ± +

− − −
+ = + + + + + =

∓

⋯ ⋯

  

 
 

Quadratic equation:  ax2+ bx + c = 0 
 
Call    D=b2 – 4ac    (discriminant)  
 

Roots:   
2

b D
x

a

− ±
=     

 
Roots are real and distinct if D>0 ; real and equal if D=0 ; complex conjugate if D<0.  

 
 

Geometric formulas 
 
A= area or surface area ;   V= volume ;   P= perimeter  
 
Parallelogram of base b and altitude h :    A=bh   
 
Triangle of base b and altitude h :    A= (1/2)bh   
 
Trapezoid of altitude h and parallel sides a and b :    A= (1/2)(a+b)h   
 
Circle of radius r :    P=2πr  ,    A=πr2   
 
Ellipse of semi-major axis a and semi-minor axis b :    A=πab   
 
Parallelepiped of base area A and height h :    V=Ah   
 
Cylindroid of base area A and height h :    V=Ah   
 
Sphere of radius r :    A=4πr2  ,    V= (4/3)πr3   
 
Circular cone of radius r and height h :    V= (1/3)πr2h   
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Properties of inequalities 
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Properties of proportions 
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Properties of absolute values of real numbers 
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Properties of powers and logarithms 
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Derivatives and integrals of elementary functions 
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COMPLEX NUMBERS 
 
 
Consider the equation  x2 +1=0.  This has no solution for real x. For this reason we 
extend the set of numbers beyond the real numbers by defining the imaginary unit 
number  i  by  
 

i2 = −1     or, symbolically,     1i = −  . 
 
Then, the solution of the above-given equation is  x= ± i .  
 
    Given the real numbers  x  and  y, we define the complex number  
 

z = x+ i y . 
 
This is often represented as an ordered pair  
 

z = x+ i y ≡ (x, y) . 
 
The number  x= Re z  is the real part of  z  while  y= Im z  is the imaginary part of  z. 
In particular, the value  z =  0  corresponds to  x =  0  and  y =  0. In general, if  y =  0, 
then  z  is a real number.  
 
    Given a complex number  z = x+ i y,  the number  
 

z x i y= −  
  
is called the complex conjugate of  z (the symbol  z *  is also used for the complex 
conjugate). Furthermore, the real quantity  
 

| z | =  (x2 + y2) 1/2 
 
is called the modulus (or absolute value) of  z. We notice that  
 

| | | |z z=  . 
 

    Example:  If  z = 3+2 i , then  3 2z i= −   and  | | | | 13z z= =  .   
 
    Exercise:  Show that, if z z= ,  then   z  is real, and conversely.  
 
    Exercise:  Show that, if  z = x+ i  y,  then  
 

Re , Im
2 2

z z z z
z x z y

i

+ −
= = = =  . 
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    Consider the complex numbers  z1 = x1+  i  y1 ,  z2 = x2+  i  y2 . As we can show, their 
sum and their difference are given by  
 

z1 + z2 = (x1 + x2) + i (y1 + y2) , 
 

z1 – z2 = (x1 – x2) + i (y1 – y2) . 
 
    Exercise:  Show that, if  z1= z2 , then  x1= x2  and  y1=  y2 .  
 
    Taking into account that  i2 = −1,  we find the product of  z1  and  z2  to be  
 

z1 z2 = (x1 x2 – y1 y2) + i (x1 y2 + x2 y1) . 
 
In particular, for  z1 =   z = x+ i  y  and  z2 =  z x i y= − ,  we have:  
 

2 2 2| |z z x y z= + = . 
 
To evaluate the ratio  z1 / z2  (z2 ≠ 0) we apply the following trick:  
 

1 1 2 1 2 1 1 2 2 1 2 1 2 2 1 1 2
2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

( )( )

| |

z z z z z x i y x i y x x y y x y x y
i

z z z z x y x y x y

+ − + −
= = = = +

+ + +
 . 

 
In particular, for  z = x+ i  y,   
 

2 2 2 2 2 2 2
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−
= = = = −
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 . 

 
 
    Properties:    
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    Exercise:  Given the complex numbers  z1 = 3 – 2 i  and  z2 =   −2 +  i  , evaluate the 

quantities  1 2| |z z± ,  1 2z z   and  1 2/z z  .  
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    Polar form of a complex number  
 
 
 
 
 
 
 

 
 
 
 
 
    A complex number  z = x+ i  y ≡ (x, y)  corresponds to a point of the x-y plane. It 
may also be represented by a vector joining the origin Ο of the axes of the complex 
plane with this point. The quantities x and y are the Cartesian coordinates of the point, 
or, the orthogonal components of the corresponding vector. We observe that  
 

x = r cos θ  ,     y = r sin θ 
 
where    

r = | z | =  ( x
2 + y2 ) 1/2      and     tan

y

x
θ =  . 

 
Thus, we can write  
 
                                          

    
 
 
The above expression represents the polar form of  z.  Note that  
 

(cos sin )z r iθ θ= − . 
 
    Let  z1= r 1 (cos θ1 +  i sin θ1)  and  z2= r 2 (cos θ2 +  i sin θ2)  be two complex 
numbers. As can be shown,  
 

1 2 1 2 1 2 1 2

1 1
1 2 1 2

2 2

[cos( ) sin ( )] ,

[cos( ) sin ( )] .

z z r r i

z r
i

z r

θ θ θ θ

θ θ θ θ

= + + +

= − + −
 

 
In particular, the inverse of a complex number  z = r  (cos θ + i sin θ )  is written  
 

1 1 1 1
(cos sin ) [cos( ) sin( )]z i i

z r r
θ θ θ θ− = = − = − + −  . 

 
    Exercise:  By using polar forms, show analytically that   z z

 –1 = 1.  
 
 

 z = x+ i y = r (cos θ + i sin θ ) 

•

x
x

y

y

θ

z x i y= +

i
O

r
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    Exponential form of a complex number  
 
    We introduce the notation  
 

cos sinie iθ θ θ= +  
 
(this notation is not arbitrary but has a deeper meaning that reveals itself within the 
context of the theory of analytic functions). Note that  
 

( ) cos ( ) sin ( ) cos sini ie e i iθ θ θ θ θ θ− −= = − + − = −  . 
 
Also,   

2 2| | | | cos sin 1i ie eθ θ θ θ−= = + = . 
 
 
    Exercise:  Show that   

1/i i ie e eθ θ θ− = = . 
 
Also show that  

cos , sin
2 2

i i i ie e e e

i

θ θ θ θ

θ θ
− −+ −

= =  . 

 
    The complex number  z = r  (cos θ +  i  sin θ ),  where  | |r z= ,  may now be expressed 
as follows:  
 

                                                            iz r e θ=        
 
It can be shown that  
 

1 2 1 2

1 ( )

( ) ( )1 1
1 2 1 2

2 2

1 1 1
,

,

i i i

i i

z e e z r e
z r r

z r
z z r r e e

z r

θ θ θ

θ θ θ θ

− − − −

+ −

= = = =

= =
 

 

where  1 2

1 1 2 2,i iz r e z r eθ θ= = .   

 

    Example:  The complex number  2 2z i= − ,  with  | z | =  r  =  2,  is written  
 

( / 4) / 42 2
2 2 cos sin 2 2

2 2 4 4
i iz i i e eπ ππ π − −      = − = − + − = =           

. 
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    Powers and roots of complex numbers   
 
    Let   z = r  (cos θ + i sin θ ) =  

ir e θ   be a complex number, where  r  =  | z | .  It can be 
proven that  
 

(cos sin ) ( 0, 1, 2, )n n in nz r e r n i n nθ θ θ= = + = ± ± ⋯  . 
 
In particular, for   z =  cos θ + i sin θ = e iθ  (r= 1)  we find the de Moivre formula  
 

(cos sin ) (cos sin )ni n i nθ θ θ θ+ = +  . 
 
Note also that, for  z ≠ 0, we have that  z 0 =  1  and  z –n = 1/z n

 .  
 
    Given a complex number  z = r  (cos θ + i sin θ ), where  r  =  | z | , an  nth root of  z  is 

any complex number  c  satisfying the equation  c n =  z . We write nc z= . An  nth root 
of a complex number admits  n  different values given by the formula  
 

2 2
cos sin , 0,1,2, , ( 1)n

k

k k
c r i k n

n n

θ π θ π+ + = + = − 
 

⋯  . 

 
    Example:  Let  z =  1.  We seek the 4th roots of unity, i.e., the complex numbers  c  
satisfying the equation  c4=  1 . We write  
 

z  = 1 (cos 0 + i sin 0)       (that is,  r = 1 ,  θ = 0) . 
 
Then,  

2 2
cos sin cos sin , 0,1,2,3

4 4 2 2k

k k k k
c i i k

π π π π
= + = + =  . 

 
We find:  

c0 = 1 ,    c1 = i   ,    c2 =  − 1 ,    c3 =  − i  . 
 
 
    Example:  Let  z =  i  .  We seek the square roots of i, that is, the complex numbers  c  
satisfying the equation  c2=  i  . We have:  
 

z  = 1 [cos (π/2) + i sin(π/2)]       (that is,  r = 1 ,  θ = π/2) ; 
 

( / 2) 2 ( / 2) 2
cos sin , 0,1

2 2k

k k
c i k

π π π π+ +
= + =  ; 

0

1

2
cos( / 4) sin ( / 4) (1 ) ,

2

2
cos(5 / 4) sin (5 / 4) (1 ) .

2

c i i

c i i

π π

π π

= + = +

= + = − +

 

 



 13 

ALGEBRA: SOME BASIC CONCEPTS 
 

 
Sets 

 
Subset:    X ⊆ Y  ⇔  ( x∈X  ⇒ x∈Y ) ;  

X = Y  ⇔  X ⊆ Y  and  Y ⊆ X    
      
Proper subset:   X ⊂ Y  ⇔  X ⊆ Y  and  X ≠Y   
   
Union of sets:    X ∪Y = { x / x∈X  or  x∈Y }  
    
Intersection of sets:   X ∩ Y = { x / x∈X  and  x∈Y }  
    
Disjoint sets:     X ∩ Y = ∅  
    
Difference of sets:    X −Y = { x / x∈X  and  x∉Y }  
   
Complement of a subset:   X ⊃Y  ;     X \ Y = X −Y  
   
Cartesian product:    X × Y = {( x, y) / x∈X  and  y∈Y }  
    
Mapping:      f : X → Y  ;    ( x∈X ) → y = f (x) ∈Y   
   

Domain / range of  f :   D (  f  ) = X ,   R (  f  ) = f ( X  ) = {  f ( x) / x ∈ X } ⊆ Y  ;   

f  is defined in X and has values in Y ;   

y= f ( x) is the image of  x under f     
 
Composite mapping:   f : X → Y ,     g : Y → Z  ;    

f o g : X → Z  ;    ( x∈X ) → g( f (x)) ∈Z   
 
Injective (1-1) mapping:  f (x1) = f (x2)  ⇔  x1= x2   ,   or   

       x1 ≠ x2  ⇔  f (x1) ≠ f (x2)   
 
Surjective (onto) mapping:   f ( X ) = Y    
 
Bijective mapping:   f  is both injective and surjective ⇒ invertible  
 
Identity mapping:    fid : X → X  ;    fid (x) = x ,  ∀x∈X   
    
Internal operation on X:  X × X → X  ;    [(x, y) ∈ X × X ] → z ∈ X  
 
External operation on X:  A × X → X  ;    [(a, x) ∈ A × X ] → y = a⋅ x  ∈ X    
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Groups 
 
A group is a set G, together with an internal operation G × G → G ;  (x, y) → z = x⋅ y, 
such that:  

1. The operation is associative:  x⋅ (y⋅ z) = (x⋅ y)⋅ z   
2. ∃ e∈G  (identity) :   x⋅ e = e⋅ x = x ,   ∀ x∈G   
3. ∀ x∈G ,  ∃ x−1∈G  (inverse):   x−1⋅x = x⋅ x−1 = e    

A group G is abelian or commutative if  x⋅ y = y⋅ x ,  ∀ x, y ∈G .  

A subset  S⊆G  is a subgroup of  G  if  S  is itself a group (clearly, then, S contains the 

identity e of G, as well as the inverse of every element of S ).   
 
 

Vector space over R 
 
Let  V={ x, y, z, ...}, and let  a, b, c, ... ∈R. Consider an internal operation + and an 
external operation ⋅ on V :  

 + :  V × V → V  ;    x+y = z   
  ⋅ :  R × V → V  ;    a⋅x = y   

Then, V is a vector space over R iff  

1. V is a commutative group with respect to + .  The identity element is denoted 
0, while the inverse of  x is denoted  –x .  

2. The operation ⋅ satisfies the following:  
a⋅(b⋅x)=  (ab)⋅x  
(a+b)⋅x = a⋅x + b⋅x  
a⋅(x+y) = a⋅x + a⋅y  
1⋅x = x ,     0⋅x = 0  

 
A set {x1 , x2 , ... , xk} of elements of V is linearly independent iff the equation1  
 
 c1 x1 + c2 x2 + ... + ck xk = 0  
 
can only be satisfied for  c1 = c2 =  ... = ck = 0 ; otherwise, the set is linearly 
dependent. The dimension dimV of V is the largest number of vectors in V that 
constitute a linearly independent set. If dimV=n , then any system {e1 , e2 , ... , en} of  
n linearly independent elements is a basis for V, and any x∈V can be uniquely 
expressed as  x = c1 e1 + c2 e2 + ... + cn en .  

A subset S⊆V is a subspace of V if S is itself a vector space under the operations (+) 

and (⋅). In particular, the sum x+y of any two elements of S, as well as the scalar 
multiple ax and the inverse −x of any element x of S, must belong to S. Clearly, this 
set must contain the identity 0 of V. If S is a subspace of V, then dim S ≤ dimV. In 
particular, S coincides with V  iff  dim S =  dimV.  
 
 

                                                 
1 The symbol (⋅) will often be omitted in the sequel.  
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Functionals 
 

A functional ω on a vector space V is a mapping  ω: V → R ; (x∈V) → t = ω(x)∈R. 
The functional ω is linear if  ω(a⋅x+b⋅y)=a⋅ω(x)+b⋅ω(y). The collection of all linear 
functionals on V is called the dual space of V, denoted V*. It is itself a vector space 
over R, and  dimV*=  dimV.  
 
 

Algebras 
 

A real algebra A is a vector space over R equipped with a binary operation  
(⋅ | ⋅) :  A × A → A  ;  (x | y) = z , such that, for  a, b ∈R,  

 (a⋅x + b⋅y | z) = a⋅(x | z) + b⋅(y | z)   
 (x | a⋅y + b⋅z) = a⋅(x | y) + b⋅(x | z)   

An algebra is commutative if, for any two elements x, y,  (x | y) = (y | x) ; it is 
associative if, for any x, y, z,  (x | (y | z)) = ((x | y) | z) .  
 
Example: The set Λ0(Rn) of all functions on Rn is a commutative, associative algebra. 
The multiplication operation  (⋅ | ⋅) :  Λ

0(Rn)× Λ0(Rn)→ Λ0(Rn)  is defined by  
 
 ( f | g )(x1, ... , xn) = f (x1, ... , xn) g(x1, ... , xn) .   
 
Example: The set of all n×n matrices is an associative, non-commutative algebra. The 
binary operation (⋅ | ⋅) is matrix multiplication.  
 
A subspace S of A is a subalgebra of A if S is itself an algebra under the same binary 
operation (⋅ | ⋅) . In particular, S must be closed under this operation; i.e., (x | y)∈S for 
any x, y in S. We write: S⊂A .   

A subalgebra S⊂A is an ideal of A iff  (x | y)∈S  and  (y | x)∈S , for any x∈S,  y∈A .  
 
 

Modules 
 
Note first that R is an associative, commutative algebra under the usual operations of 
addition and multiplication. Thus, a vector space over R is a vector space over an 
associative, commutative algebra. More generally, a module M over A is a vector 
space over an associative but (generally) non-commutative algebra. In particular, the 
external operation (⋅) on M is defined by    
 

⋅ :  A × M → M ;    a⋅x = y    (a∈A ;  x, y ∈M ) .  
 
Example: The collection of all n-dimensional column matrices, with A taken to be the 
algebra of  n×n matrices, and with matrix multiplication as the external operation.  
 
 
 
 



 16 

Vector fields 
 
A vector field V on Rn is a map from a domain of Rn into Rn :  
 
 V : Rn ⊇U →Rn ;   [x ≡ (x1,..., xn)∈U ] → V(x) ≡ (V 1(xk),...,V n(xk))∈Rn .  
 
The vector x represents a point in U, with coordinates (x1,..., xn). The functions V i(xk) 
(i= 1,...,n) are the components of V in the coordinate system (xk).  
 
Given two vector fields U and V, we can construct a new vector field W=U+V such 
that W(x)=U(x)+V(x). The components of W are the sums of the respective 
components of U and V.  
 
Given a vector field V and a constant a∈R, we can construct a new vector field Z=aV 
such that Z(x)=  aV(x). The components of Z are scalar multiples (by a) of those of V.  
 
It follows from the above that the collection of all vector fields on Rn is a vector space 
over R .  
 
More generally, given a vector field V and a function f ∈Λ0(Rn), we can construct a 
new vector field Z=  f V such that Z(x)=  f (x)V(x). Given that Λ0(Rn) is an associative 
algebra, we conclude that the collection of all vector fields on Rn is a module over 
Λ

0(Rn) (in this particular case, the algebra Λ
0(Rn) is commutative).  

 
A note on linear independence:  
 
Let {V1 , ... ,Vr}  ≡ { Va} be a collection of vector fields on Rn.  
 
(a) The set {Va} is linearly dependent over R (linearly dependent with constant 
coefficients) iff there exist real constants c1 ,...,cr , not all zero, such that  
 
 c1V1 (x) + … + crVr (x) = 0 ,    ∀x∈Rn .  
 
If the above relation is satisfied only for  c1 = …= cr = 0, the set {Va} is linearly 
independent over R.  
 
(b) The set {Va} is linearly dependent over Λ0(Rn) iff there exist functions  f1 (x

k), ..., 
fr (x

k), not all identically zero over Rn, such that  
 
 f1 (x

k) V1 (x) + … + fr (x
k) Vr (x) = 0 ,    ∀x ≡ (x

k)∈Rn .  
 
If this relation is satisfied only for  f1 (x

k)=…= fr (x
k) ≡ 0, the set {Va} is linearly 

independent over Λ0(Rn).  
 
There can be at most n elements in a linearly independent system over Λ0(Rn). These 
elements form a basis {e1 , ..., en}≡{ ek} for the module of all vector fields on Rn. An 
element of this module, i.e. an arbitrary vector field V, is written as a linear 
combination of the {ek} with coefficients V k∈ Λ0(Rn). Thus, at any point x ≡ (x

k)∈Rn,  
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 V(x) = V 1(xk) e1  + ...+ V n(xk) en ≡ (V 1(xk), ... ,V
 n(xk)) .  

 
In particular, in the basis {ek},  
 
 e1 ≡ (1,0,0,...,0),   e2 ≡ (0,1,0,...,0),  …  , en ≡ (0,0,...,0,1) .    
 
Example: Let n=3, i.e., Rn=R3. Call {e1 , e2 , e3}  ≡ { i , j, k}. Let V be a vector field on 
R3. Then, at any point  x ≡ (x, y, z)∈R3,  
 
 V(x) = Vx (x, y, z) i  + Vy (x, y, z)  j  + Vz (x, y, z) k  ≡ (Vx , Vy , Vz ) .   
 
Now, consider the six vector fields  
 
 V1 = i ,  V2 = j ,  V3 = k ,  V4 = x j − y i ,  V5 = y k − z j ,  V6 = z i − x k .   
 
Clearly, the {V1 , V2 , V3 } are linearly independent over Λ0(R3), since they constitute 
the basis {i , j, k}. On the other hand, the V4 , V5 , V6 are separately linearly dependent 
on the {V1 , V2 , V3 } over Λ0(R3). Moreover, the set {V4 , V5 , V6 } is also linearly 
dependent over Λ0(R3), since  zV4 + xV5 + yV6 =  0 . Thus, the set {V1 , …………, V6} is 
linearly dependent over Λ0(R3). On the other hand, the system {V1 , …………, V6} is linearly 
independent over R, since the equation  c1V1 + … + c6V6 = 0 , with  c1 ,...,c6∈R 
(constant coefficients), can only be satisfied for  c1 = ...= c6 =  0 . In general,  
 

there is an infinite number of linearly independent vector fields on Rn over R , 
but only  n  linearly independent fields over Λ0(Rn).  

 
 

Derivation on an algebra 
 
Let L be an operation on an algebra A (an operator on A):  
 
 L :  A→A ;    (x∈A) → y = L x ∈A .   
 
L is a derivation on A iff, ∀x, y ∈A and a, b ∈R ,  

L (ax+by) = aL(x) + bL(y)            (linearity)   
L (x | y) = (L x | y) + (x | L y)       (Leibniz rule)   

 
Example: Let  A=Λ0(Rn)={ f (x1,…, x

n)}, and let L be the linear operator  
 
 L = φ1(xk) ∂/∂x1 + … + φ n (xk) ∂/∂xn ≡ φ i (xk) ∂/∂xi ,   
 
where the φ i(xk) are given functions. As can be shown,  
 
 L [ f (xk) g(xk)] = [L f (xk)] g(xk) +  f (xk) L g(xk) .   
 
Hence, L is a derivation on Λ0(Rn).  
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Lie algebra 
 
An algebra L over R is a (real) Lie algebra with binary operation [⋅ , ⋅]: L×L→L (Lie 

bracket) iff this operation satisfies the properties:  

 [ax + by , z] = a [x , z] + b [  y , z]   
 [x , y] = − [ y , x]         (antisymmetry)  
 [x , [ y , z]] + [  y , [z , x]] + [z , [x , y]] =  0    (Jacobi identity)  

(where x, y, z ∈L and a, b ∈R). Note that, by the antisymmetry of the Lie bracket, the 

first and third properties are written, alternatively,  

 [x , ay + bz] = a [x , y] + b [x , z] ,  
 [[x ,  y] , z] + [[  y , z] , x] + [[z , x] , y] =  0 .   

A Lie algebra is a non-associative algebra, since, as follows by the above properties,  

 [x , [ y , z]] ≠ [[x ,  y] , z] .   
 
Example: The algebra of n×n matrices, with  [A , B]=AB−BA  (commutator).  
 
Example: The algebra of all vectors in R3, with  [a , b] = a × b  (vector product).  
 
 

Lie algebra of derivations 
 

Consider the algebra  A=Λ0(Rn)={ f (x1,…, x
n)}. Consider also the set D(A) of linear 

operators on A, of the form  
 
 L = φ i (xk) ∂/∂xi     (sum on i = 1, 2, … , n) .   
 
These first-order differential operators are derivations on A (the Leibniz rule is 
satisfied). Now, given two such operators L1 , L2 , we construct the linear operator (Lie 
bracket of L1 and L2 ), as follows:  
 
 [L1 , L2 ] = L1 L2 −  L2 L1  ;    

 [L1 , L2 ] f (x
k) = L1 (L2 f (x

k)) −  L2 (L1 f (x
k))  .   

 
It can be shown that [L1 , L2 ] is a  first-order differential operator (a derivation), hence 
is a member of D(A). (This is not the case with second-order operators like L1L2!) 
Moreover, the Lie bracket of operators satisfies all the properties of the Lie bracket of 
a general Lie algebra (such as antisymmetry and Jacobi identity). It follows that  
 

the set D(A) of derivations on Λ0(Rn) is a Lie algebra, with binary operation 
defined as the Lie bracket of operators.  
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Direct sum of subspaces 
 
Let V be a vector space over a field K (where K may be R or C), of dimension 
dimV=n. Let S1 , S2  be disjoint (i.e., S1 ∩ S2 ={ 0}) subspaces of V. We say that V is 
the direct sum of S1 and S2 if each vector of V can be uniquely represented as the sum 
of a vector of S1 and a vector of S2 . We write: V= S1 ⊕ S2 . In terms of dimensions, 
dimV=dim S1 +dim S2 . We similarly define the vector sum of three subspaces of V, 
each of which is disjoint from the direct sum of the other two (i.e., S1 ∩ (S2⊕S3)={ 0}, 
etc.).  
 
 

Homomorphism of vector spaces 
 
Let V, W be vector spaces over a field K. A mapping Φ:V→W is said to be a linear 
mapping or homomorphism if it preserves linear operations, i.e.,  
 
 Φ(x+y) = Φ(x) + Φ( y) ,    Φ(kx) = k Φ(x) ,    ∀ x, y ∈V  and  k∈K .   
 
A homomorphism which is also bijective (1-1) is called an isomorphism.  
 
The set of vectors x∈V mapping under Φ into the zero of W is called the kernel of the 
homomorphism Φ:  
 
 Ker Φ = { x∈V : Φ(x) = 0} .   
 
Note that Φ(0)=0, for any homomorphism (clearly, the two zeros refer to different 
vector spaces). Thus, in general, 0∈Ker Φ.  
 
If  Ker Φ ={0}, then the homomorphism Φ is also an isomorphism of V onto a 
subspace of W. If, moreover, dimV=dimW, then the map Φ:V→W is itself an 
isomorphism. In this case, Im Φ =W, where, in general, Im Φ (image of the 
homomorphism) is the collection of images of all vectors of V under the map Φ.  
 
 

The algebra of linear operators 
 
Let V be a vector space over a field K. A linear operator A on V is a homomorphism 
A : V→V. Thus,  
 
 A(x+y) = A(x) + A(y) ,    A(kx) = k A(x) ,    ∀ x, y ∈V  and  k∈K .   
 
The sum A+B and the scalar multiplication kA (k∈K) are linear operators defined by  
 
 (A+B) x = A x +  B x  ,     (kA) x = k (A x)  .    
 
Under these operations, the set Op(V) of all linear operators on V is a vector space. 
The zero element of that space is a zero operator 0 such that  0x=0, ∀x ∈V.  
 
 



 20 

Since A and B are mappings, their composition may be defined. This is regarded as 
their product AB:  
 
 (AB) x ≡ A(Bx)  ,    ∀x ∈V.   
 
Note that AB is a linear operator on V, hence belongs to Op(V). In general, operator 
products are non-commutative: AB≠BA. However, they are associative and 
distributive over addition:  
 
 (AB)C = A (BC) ≡ ABC  ,     A (B+C) = AB+AC  .   
 
The identity operator E is the mapping of Op(V) which leaves every element of V 
fixed:  E x =  x . Thus, AE=EA=A . Operators of the form kE (k∈K), called scalar 
operators, are commutative with all operators. In fact, any operator commutative with 
every operator of Op(V) is a scalar operator.  
 
It follows from the above that the set Op(V) of all linear operators on a given vector 
space V is an algebra. This algebra is associative but (generally) non-commutative.  
 
An operator A is said to be invertible if it represents a bijective (1-1) mapping, i.e., if 
it is an isomorphism of V onto itself. In this case, an inverse operator A−1 exists such 
that AA−1= A−1A=E. Practically this means that, if A maps x∈V onto y∈V, then A−1 
maps y back onto x. For an invertible operator A,  Ker A={ 0}  and  Im A=V.  
 
 

Matrix representation of a linear operator 
 
Let A be a linear operator on V. Let {ei} (  i= 1,..., n) be a basis of V. Let  
 
 A ek = ei A i k      (sum on  i)    
 
where the Aik are real or complex, depending on whether V is a vector space over R or 
C. The n×n matrix A=[A i k] is called the matrix of the operator A in the basis { ei}.  
 
Now, let  x=xi ei (sum on i) be a vector in V, and let  y=A x. If  y= yi ei , then, by the 
linearity of A,  
 
 yi  = A i k xk     (sun on  k) .  
 
In matrix form,  
 
 [ y ]  n×1  =  [  A ]  n×n  [  x ]  n×1  .   
 
Next, let  A, B be linear operators on V. Define their product  C=AB  by  
 
 C x = (AB) x ≡ A (Bx)  ,    x∈V .   
 
Then, for any basis {ei},   C ek = A (B ek ) =  ei A i j B j k  ≡  ei C i k    ⇒   
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 C i k = A i j B j k    
 
or, in matrix form,  
 
 C = A B .    
 
That is,  
 

the matrix of the product of two operators is the product of the matrices of 
these operators, in any basis of V.   

 
Consider now a change of basis defined by the transition matrix T= [T i k]:  
 
 ek΄ = ei T i k  .   
 
The inverse transformation is  
 
 ek = ei΄ (T

 −1) i k  .   
 
Under this basis change, the matrix A of an operator A transforms as  
 
 A΄ = T −1A T     (similarity transformation) .   
 
Under basis transformations, the trace and the determinant of A remain unchanged:  
 
 trA΄ = trA   ,      detÁ  = detA  .   
 
An operator A is said to be nonsingular (singular) if  detA≠0  (detA=0). Note that this 
is a basis-independent property. Any nonsingular operator is invertible, i.e., there 
exists an inverse operator A−1∈Op(V) such that A A−1=  A−1A=E. Since an invertible 
operator represents a bijective mapping (i.e., both 1-1 and onto), it follows that 
KerA={ 0}  and  ImA=V. If A is invertible (nonsingular), then, for any basis {ei} 
(i= 1,..., n) of V, the vectors {Aei} are linearly independent and hence also constitute a 
basis.  
 
 

Invariant subspaces and eigenvectors 
 

Let V be an n-dimensional vector space over a field K, and let A be a linear operator 
on V. The subspace S of V is said to be invariant under A if, for every vector x of S, 
the vector Ax again belongs to S.  Symbolically, AS⊆S.  
 
A vector x≠0 is said to be an eigenvector of A if it generates a one-dimensional 
invariant subspace of V under A. This means that an element λ∈K exists, such that  
 
 A x = λ x  .   
 
The element λ is called an eigenvalue of A, to which eigenvalue the eigenvector x 
belongs. Note that, trivially, the null vector 0 is an eigenvector of A, belonging to any 
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eigenvalue λ. The set of all eigenvectors of A, belonging to a given λ, is a subspace of 
V called the proper subspace belonging to λ.  
 
It can be shown that the eigenvalues of A are basis-independent quantities. Indeed, let 
A=[Aik] be the (n×n) matrix representation of A in some basis {ei} of V, and let x=xiei 
be an eigenvector belonging to λ. We denote by X=[xi] the column vector representing 
x in that basis. The eigenvalue equation for A is written, in matrix form,  
 
 Aik xk = λ xi     or     A X = λ X  .   
 
This is written  
 
 (A−λ1n) X = 0  .   
 
This equation constitutes a linear homogeneous system for X=[xi], which has a 
nontrivial solution iff  
 
 det (A−λ1n) = 0  .   
 
This polynomial equation determines the eigenvalues λi (i= 1,...,n) (not necessarily all 
different from each-other) of A. Since the determinant of the matrix representation of 
an operator [in particular, of the operator (A−λE) for any given λ] is a basis-
independent quantity, it follows that, if the above equation is satisfied for a certain λ 
in a certain basis (where A is represented by the matrix A), it will also be satisfied for 
the same λ in any other basis (where A is represented by another matrix, say, A΄ ). We 
conclude that the eigenvalues of an operator are a property of the operator itself and 
do not depend on the choice of basis of V.  
 
If we can find n linearly independent eigenvectors {xi} of A, belonging to the 
corresponding eigenvalues λi , we can use these vectors to define a basis for V. In this 
basis, the matrix representation of A has a particularly simple diagonal form:  
 
 A = diag (λ1 , ... , λn )  .   
 
Using this expression, and the fact that the quantities trA, detA and λi are invariant 
under basis transformations, we conclude that, in any basis of V,  
 
 trA = λ1 + λ2 +...+ λn  ,       detA = λ1 λ2... λn  .   
 
We note, in particular, that all eigenvalues of an invertible (nonsingular) operator are 
nonzero. Indeed, if even one is zero, then detA=0 and A is singular.  
 
An operator A is called nilpotent if Am=0 for some natural number m>1. The smallest 
such value of m is called the degree of nilpotency, and it cannot exceed n. All 
eigenvalues of a nilpotent operator are zero. Thus, such an operator is singular (non-
invertible).  
 
An operator A is called idempotent (or projection operator) if A2=A. It follows that 
Am=A, for any natural number m. The eigenvalues of an idempotent operator can take 
the values 0 or 1.  
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BASIC MATRIX PROPERTIES 
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If any row or column of A is multiplied by c, then so is det A.  
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Let ( ) [ ( )], ( ) [ ( )]i j i jA A t a t B B t b t= = = = , be (n×n) matrices. The derivative 

of A (similarly, of B) is the (n×n) matrix dA/dt , with elements  

( )i j
i j

dA d
a t

dt dt
  = 
 

 .  

The integral of A (similarly, of B) is the (n×n) matrix defined by  

( )( ) ( )i j
i j

A t dt a t dt=∫ ∫  .  

 
 



 24 

1 1 1 1 1 1

( ) ; ( )

[ , ] , ,

( ) ( ) ( )

( )

d dA dB d dA dB
A B AB B A

dt dt dt dt dt dt
d dA dB

A B B A
dt dt dt

d dA
A A A d A A dA A

dt dt
dA d

tr trA
dt dt

− − − − − −

± = ± = +

   = +      

= − ⇒ = −

  = 
 

 

 
Let ( , )A A x y= . Call / x xA x A A∂ ∂ ≡ ∂ ≡ , etc.:  

1 1 1 1

1 1 1 1

1 1 1 1 1 1

( ) ( ) [ , ] 0

( ) ( ) [ , ] 0

( ) ( ) ( ) ( )

x y y x x y

x y y x x y

x y y x y x x y

A A A A A A A A

A A A A A A A A

A A A A A A A A A A A A

− − − −

− − − −

− − − − − −

∂ − ∂ + =

∂ − ∂ − =

= ⇔ =

 

 

( ) ( ) ( ) ( )

( )

1

* †

2

0

1

* † 1

exp 1
! 2

; ; ;

when [ , ] 0

In general,     where

1 1
[ , ] [ , [ , ]] [ , [ , ]]

2 12

T

n
A

n

A BAB

TA A A A A A A A

A B B A A B

A B C

A A
e A A

n

B e B e

e e e e e e e e

e e e e e A B

e e e

C A B A B A A B B B A

−

∞

=

−

− −

+

≡ = = + + +

=

= = = =

= = =

=

= + + + + +

∑ ⋯

⋯
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