Costas J. Papachristou

MATHEMATICAL HANDBOOK

MATHEMATICAL FORMULAS AND PROPERTIES

Trigonometric formulas

$\sin ^{2} A+\cos ^{2} A=1 ; \quad \tan x=\frac{\sin x}{\cos x} ; \quad \cot x=\frac{\cos x}{\sin x}=\frac{1}{\tan x}$
$\cos ^{2} x=\frac{1}{1+\tan ^{2} x} \quad ; \quad \sin ^{2} x=\frac{1}{1+\cot ^{2} x}=\frac{\tan ^{2} x}{1+\tan ^{2} x}$
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad, \quad \cot (A \pm B)=\frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$
$\sin 2 A=2 \sin A \cos A$
$\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A$
$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}, \quad \cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}$
$\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$
$\sin A-\sin B=2 \sin \frac{A-B}{2} \cos \frac{A+B}{2}$
$\cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$
$\cos A-\cos B=2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$

$$
\begin{array}{ll}
\sin (-A)=-\sin A, & \cos (-A)=\cos A \\
\tan (-A)=-\tan A, & \cot (-A)=-\cot A \\
\sin \left(\frac{\pi}{2} \pm A\right)=\cos A, & \cos \left(\frac{\pi}{2} \pm A\right)=\mp \sin A \\
\sin (\pi \pm A)=\mp \sin A, & \cos (\pi \pm A)=-\cos A
\end{array}
$$

	\sin	\cos	\tan	\cot
0	0	1	0	∞
$\pi / 6=30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\pi / 4=45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\pi / 3=60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\pi / 2=90^{\circ}$	1	0	∞	0
$\pi=180^{\circ}$	0	-1	0	∞

Basic trigonometric equations

$$
\begin{aligned}
& \sin x=\sin \alpha \Rightarrow\left\{\begin{array}{l}
x=\alpha+2 k \pi \\
x=(2 k+1) \pi-\alpha
\end{array} \quad(k=0, \pm 1, \pm 2, \cdots)\right. \\
& \cos x=\cos \alpha \Rightarrow\left\{\begin{array}{l}
x=\alpha+2 k \pi \\
x=2 k \pi-\alpha
\end{array} \quad(k=0, \pm 1, \pm 2, \cdots)\right. \\
& \tan x=\tan \alpha \Rightarrow x=\alpha+k \pi \quad(k=0, \pm 1, \pm 2, \cdots) \\
& \cot x=\cot \alpha \Rightarrow x=\alpha+k \pi \quad(k=0, \pm 1, \pm 2, \cdots) \\
& \sin x=-\sin \alpha \Rightarrow\left\{\begin{array}{l}
x=2 k \pi-\alpha \\
x=\alpha+(2 k+1) \pi
\end{array} \quad(k=0, \pm 1, \pm 2, \cdots)\right. \\
& \cos x=-\cos \alpha \Rightarrow\left\{\begin{array}{l}
x=(2 k+1) \pi-\alpha \\
x=\alpha+(2 k+1) \pi
\end{array} \quad(k=0, \pm 1, \pm 2, \cdots)\right.
\end{aligned}
$$

Hyperbolic functions

$\cosh x=\frac{e^{x}+e^{-x}}{2} ; \quad \sinh x=\frac{e^{x}-e^{-x}}{2} ; \quad \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{1}{\operatorname{coth} x}$
$\cosh ^{2} x-\sinh ^{2} x=1$
$\cosh (-x)=\cosh x, \quad \sinh (-x)=-\sinh x$

Power formulas

$(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$
$(a \pm b)^{3}=a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3}$
$a^{2}-b^{2}=(a+b)(a-b)$
$a^{3} \pm b^{3}=(a \pm b)\left(a^{2} \mp a b+b^{2}\right)$
$(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\cdots+b^{n} \quad(n=1,2,3, \cdots)$

Quadratic equation: $a x^{2}+b x+c=0$

Call $D=b^{2}-4 a c \quad$ (discriminant)
Roots: $\quad x=\frac{-b \pm \sqrt{D}}{2 a}$
Roots are real and distinct if $D>0$; real and equal if $D=0$; complex conjugate if $D<0$.

Geometric formulas

$A=$ area or surface area ; $V=$ volume ; $P=$ perimeter
Parallelogram of base b and altitude $h: \quad A=b h$
Triangle of base b and altitude $h: \quad A=(1 / 2) b h$
Trapezoid of altitude h and parallel sides a and $b: \quad A=(1 / 2)(a+b) h$
Circle of radius r : $P=2 \pi r, \quad A=\pi r^{2}$
Ellipse of semi-major axis a and semi-minor axis $b: \quad A=\pi a b$
Parallelepiped of base area A and height $h: \quad V=A h$
Cylindroid of base area A and height $h: \quad V=A h$
Sphere of radius $r: \quad A=4 \pi r^{2}, \quad V=(4 / 3) \pi r^{3}$
Circular cone of radius r and height $h: \quad V=(1 / 3) \pi r^{2} h$

Properties of inequalities

$$
\begin{aligned}
& a<b \text { and } b<c \Rightarrow a<c \\
& a \geq b \text { and } b \geq a \Rightarrow a=b \\
& a<b \Rightarrow-a>-b \\
& 0<a<b \Rightarrow \frac{1}{a}>\frac{1}{b} \\
& a<b \text { and } c \leq d \Rightarrow a+c<b+d \\
& 0<a<b \text { and } 0<c \leq d \Rightarrow a c<b d \\
& 0<a<1 \Rightarrow a>a^{2}>a^{3}>\cdots, a^{n}<1, \sqrt[n]{a}<1 \\
& a>1 \Rightarrow a<a^{2}<a^{3}<\cdots, a^{n}>1, \sqrt[n]{a}>1 \\
& 0<a<b \Rightarrow a^{n}<b^{n}, \sqrt[n]{a}<\sqrt[n]{b}
\end{aligned}
$$

Properties of proportions

Assume that $\frac{\alpha}{\beta}=\frac{\gamma}{\delta}=\kappa$. Then,

$$
\begin{array}{ll}
\alpha \delta=\beta \gamma, & \frac{\alpha \pm \gamma}{\beta \pm \delta}=\kappa \\
\frac{\alpha \pm \beta}{\beta}=\frac{\gamma \pm \delta}{\delta}, & \frac{\alpha}{\beta \pm \alpha}=\frac{\gamma}{\delta \pm \gamma}
\end{array}
$$

Properties of absolute values of real numbers

$$
\left.\begin{array}{l}
|a|=a, \quad \text { if } a \geq 0 \\
\quad=-a, \text { if } a<0
\end{array} \begin{array}{l}
|a| \geq 0 \\
|-a|=|a| \\
|a|^{2}=a^{2} \\
\sqrt{a^{2}}=|a| \\
|x| \leq \varepsilon \Leftrightarrow-\varepsilon \leq x \leq \varepsilon \quad(\varepsilon>0) \\
|x| \geq a>0 \quad \Leftrightarrow \quad x \geq a \quad \text { or } \quad x \leq-a
\end{array}\right] \begin{aligned}
& ||a|-|b|| \leq|a \pm b| \leq|a|+|b| \\
& |a \cdot b|=|a| \| b \mid \\
& \left|a^{k}\right|=|a|^{k} \quad(k \in Z) \\
& \left|\frac{a}{b}\right|=\frac{|a|}{|b|} \quad(b \neq 0)
\end{aligned}
$$

Properties of powers and logarithms

$$
\begin{aligned}
& x^{0}=1 \quad(x \neq 0) \\
& x^{\alpha} x^{\beta}=x^{\alpha+\beta} \\
& \frac{x^{\alpha}}{x^{\beta}}=x^{\alpha-\beta} \\
& \frac{1}{x^{\alpha}}=x^{-\alpha} \\
& \left(x^{\alpha}\right)^{\beta}=x^{\alpha \beta} \\
& (x y)^{\alpha}=x^{\alpha} y^{\alpha} \quad ; \quad\left(\frac{x}{y}\right)^{\alpha}=\frac{x^{\alpha}}{y^{\alpha}} \\
& \ln 1=0 \\
& \ln \left(e^{\alpha}\right)=\alpha \quad(\alpha \in \mathbb{R}), \quad e^{\ln \alpha}=\alpha \quad\left(\alpha \in \mathbb{R}^{+}\right) \\
& \ln (\alpha \beta)=\ln \alpha+\ln \beta \\
& \ln \left(\frac{\alpha}{\beta}\right)=\ln \alpha-\ln \beta=-\ln \left(\frac{\beta}{\alpha}\right) \\
& \ln \left(\frac{1}{\alpha}\right)=-\ln \alpha \\
& \ln \left(\alpha^{k}\right)=k \ln \alpha \quad(k \in \mathbb{R})
\end{aligned}
$$

Derivatives and integrals of elementary functions

$$
\begin{array}{lll}
(c)^{\prime}=0 \quad(c=\text { const. }) & (\sin x)^{\prime}=\cos x & (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\
\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \quad(\alpha \in R) & (\cos x)^{\prime}=-\sin x & (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
\left(e^{x}\right)^{\prime}=e^{x} & (\tan x)^{\prime}=\frac{1}{\cos ^{2} x} & (\arctan x)^{\prime}=\frac{1}{1+x^{2}} \\
(\ln x)^{\prime}=\frac{1}{x} \quad(x>0) & (\cot x)^{\prime}=-\frac{1}{\sin ^{2} x} & (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \\
(\sinh x)^{\prime}=\cosh x & (\cosh x)^{\prime}=\sinh x &
\end{array}
$$

$$
\begin{aligned}
& \int d x=x+C ; \quad \int x^{a} d x=\frac{x^{a+1}}{a+1}+C \quad(a \neq-1) \\
& \int \frac{d x}{x}=\ln |x|+C
\end{aligned}
$$

$$
\int e^{x} d x=e^{x}+C
$$

$$
\int \cos x d x=\sin x+C ; \quad \int \sin x d x=-\cos x+C
$$

$$
\int \frac{d x}{\cos ^{2} x}=\tan x+C \quad ; \quad \int \frac{d x}{\sin ^{2} x}=-\cot x+C
$$

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C
$$

$$
\int \frac{d x}{1+x^{2}}=\arctan x+C
$$

$$
\int \frac{d x}{x^{2}-1}=\frac{1}{2} \ln \left|\frac{x-1}{x+1}\right|+C
$$

$$
\int \frac{d x}{\sqrt{x^{2} \pm 1}}=\ln \left(x+\sqrt{x^{2} \pm 1}\right)+C
$$

COMPLEX NUMBERS

Consider the equation $x^{2}+1=0$. This has no solution for real x. For this reason we extend the set of numbers beyond the real numbers by defining the imaginary unit number i by

$$
i^{2}=-1 \quad \text { or, symbolically, } \quad i=\sqrt{-1}
$$

Then, the solution of the above-given equation is $x= \pm i$.

Given the real numbers x and y, we define the complex number

$$
z=x+i y
$$

This is often represented as an ordered pair

$$
z=x+i y \equiv(x, y)
$$

The number $x=\operatorname{Re} z$ is the real part of z while $y=\operatorname{Im} z$ is the imaginary part of z. In particular, the value $z=0$ corresponds to $x=0$ and $y=0$. In general, if $y=0$, then z is a real number.

Given a complex number $z=x+i y$, the number

$$
\bar{z}=x-i y
$$

is called the complex conjugate of z (the symbol z^{*} is also used for the complex conjugate). Furthermore, the real quantity

$$
|z|=\left(x^{2}+y^{2}\right)^{1 / 2}
$$

is called the modulus (or absolute value) of z. We notice that

$$
|z|=|\bar{z}| .
$$

Example: If $z=3+2 i$, then $\bar{z}=3-2 i$ and $|z|=|\bar{z}|=\sqrt{13}$.

Exercise: Show that, if $z=\bar{z}$, then z is real, and conversely.

Exercise: Show that, if $z=x+i y$, then

$$
\operatorname{Re} z=x=\frac{z+\bar{z}}{2}, \quad \operatorname{Im} z=y=\frac{z-\bar{z}}{2 i} .
$$

Consider the complex numbers $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$. As we can show, their sum and their difference are given by

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right), \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right) .
\end{gathered}
$$

Exercise: Show that, if $z_{1}=z_{2}$, then $x_{1}=x_{2}$ and $y_{1}=y_{2}$.
Taking into account that $i^{2}=-1$, we find the product of z_{1} and z_{2} to be

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

In particular, for $z_{1}=z=x+i y$ and $z_{2}=\bar{z}=x-i y$, we have:

$$
z \bar{z}=x^{2}+y^{2}=|z|^{2} .
$$

To evaluate the ratio $z_{1} / z_{2}\left(z_{2} \neq 0\right)$ we apply the following trick:

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1} \bar{z}_{2}}{z_{2} \bar{z}_{2}}=\frac{z_{1} \bar{z}_{2}}{\left|z_{2}\right|^{2}}=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{x_{2}{ }^{2}+y_{2}{ }^{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}{ }^{2}+y_{2}{ }^{2}}+i \frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}{ }^{2}+y_{2}{ }^{2}} .
$$

In particular, for $z=x+i y$,

$$
\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}=\frac{\bar{z}}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} .
$$

Properties:

$$
\begin{gathered}
\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}, \quad \overline{z_{1}-z_{2}}=\bar{z}_{1}-\bar{z}_{2} \\
\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}, \quad \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}} \\
|\bar{z}|=|z|, \quad z \bar{z}=|z|^{2}, \quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \\
\left|z^{n}\right|=|z|^{n}, \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
\end{gathered}
$$

Exercise: Given the complex numbers $z_{1}=3-2 i$ and $z_{2}=-2+i$, evaluate the quantities $\left|z_{1} \pm z_{2}\right|, \bar{z}_{1} z_{2}$ and $\overline{z_{1} / z_{2}}$.

Polar form of a complex number

A complex number $z=x+i y \equiv(x, y)$ corresponds to a point of the $x-y$ plane. It may also be represented by a vector joining the origin O of the axes of the complex plane with this point. The quantities x and y are the Cartesian coordinates of the point, or, the orthogonal components of the corresponding vector. We observe that

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

where

$$
r=|z|=\left(x^{2}+y^{2}\right)^{1 / 2} \quad \text { and } \quad \tan \theta=\frac{y}{x} .
$$

Thus, we can write

$$
z=x+i y=r(\cos \theta+i \sin \theta)
$$

The above expression represents the polar form of z. Note that

$$
\bar{z}=r(\cos \theta-i \sin \theta) .
$$

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers. As can be shown,

$$
\begin{aligned}
& z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right], \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] .
\end{aligned}
$$

In particular, the inverse of a complex number $z=r(\cos \theta+i \sin \theta)$ is written

$$
z^{-1}=\frac{1}{z}=\frac{1}{r}(\cos \theta-i \sin \theta)=\frac{1}{r}[\cos (-\theta)+i \sin (-\theta)] .
$$

Exercise: By using polar forms, show analytically that $z z^{-1}=1$.

Exponential form of a complex number

We introduce the notation

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

(this notation is not arbitrary but has a deeper meaning that reveals itself within the context of the theory of analytic functions). Note that

$$
e^{-i \theta}=e^{i(-\theta)}=\cos (-\theta)+i \sin (-\theta)=\cos \theta-i \sin \theta
$$

Also,

$$
\left|e^{i \theta}\right|=\left|e^{-i \theta}\right|=\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Exercise: Show that

$$
e^{-i \theta}=1 / e^{i \theta}=\overline{e^{i \theta}}
$$

Also show that

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} .
$$

The complex number $z=r(\cos \theta+i \sin \theta)$, where $r=|z|$, may now be expressed as follows:

$$
z=r e^{i \theta}
$$

It can be shown that

$$
\begin{gathered}
z^{-1}=\frac{1}{z}=\frac{1}{r} e^{-i \theta}=\frac{1}{r} e^{i(-\theta)}, \quad \bar{z}=r e^{-i \theta} \\
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}, \quad \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
\end{gathered}
$$

where $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}$.
Example: The complex number $z=\sqrt{2}-i \sqrt{2}$, with $|z|=r=2$, is written

$$
z=2\left(\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)=2\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]=2 e^{i(-\pi / 4)}=2 e^{-i \pi / 4} .
$$

Powers and roots of complex numbers

Let $z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$ be a complex number, where $r=|z|$. It can be proven that

$$
z^{n}=r^{n} e^{i n \theta}=r^{n}(\cos n \theta+i \sin n \theta) \quad(n=0, \pm 1, \pm 2, \cdots)
$$

In particular, for $z=\cos \theta+i \sin \theta=e^{i \theta}(r=1)$ we find the de Moivre formula

$$
(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)
$$

Note also that, for $z \neq 0$, we have that $z^{0}=1$ and $z^{-n}=1 / z^{n}$.
Given a complex number $z=r(\cos \theta+i \sin \theta)$, where $r=|z|$, an nth root of z is any complex number c satisfying the equation $c^{n}=z$. We write $c=\sqrt[n]{z}$. An nth root of a complex number admits n different values given by the formula

$$
c_{k}=\sqrt[n]{r}\left(\cos \frac{\theta+2 k \pi}{n}+i \sin \frac{\theta+2 k \pi}{n}\right), \quad k=0,1,2, \cdots,(n-1) .
$$

Example: Let $z=1$. We seek the 4th roots of unity, i.e., the complex numbers c satisfying the equation $c^{4}=1$. We write

$$
z=1(\cos 0+i \sin 0) \quad(\text { that is, } r=1, \theta=0) .
$$

Then,

$$
c_{k}=\cos \frac{2 k \pi}{4}+i \sin \frac{2 k \pi}{4}=\cos \frac{k \pi}{2}+i \sin \frac{k \pi}{2}, \quad k=0,1,2,3 .
$$

We find:

$$
c_{0}=1, \quad c_{1}=i, \quad c_{2}=-1, \quad c_{3}=-i .
$$

Example: Let $z=i$. We seek the square roots of i, that is, the complex numbers c satisfying the equation $c^{2}=i$. We have:

$$
\begin{gathered}
z=1[\cos (\pi / 2)+i \sin (\pi / 2)] \quad \text { (that is, } r=1, \theta=\pi / 2) ; \\
c_{k}=\cos \frac{(\pi / 2)+2 k \pi}{2}+i \sin \frac{(\pi / 2)+2 k \pi}{2}, \quad k=0,1 ; \\
c_{0}=\cos (\pi / 4)+i \sin (\pi / 4)=\frac{\sqrt{2}}{2}(1+i), \\
c_{1}=\cos (5 \pi / 4)+i \sin (5 \pi / 4)=-\frac{\sqrt{2}}{2}(1+i) .
\end{gathered}
$$

ALGEBRA: SOME BASIC CONCEPTS

Sets

Subset:
$X \subseteq Y \Leftrightarrow(x \in X \Rightarrow x \in Y) ;$
$X=Y \Leftrightarrow X \subseteq Y$ and $Y \subseteq X$
Proper subset:
$X \subset Y \Leftrightarrow X \subseteq Y$ and $X \neq Y$
Union of sets:
$X \cup Y=\{x / x \in X$ or $x \in Y\}$
Intersection of sets:
$X \cap Y=\{x / x \in X$ and $x \in Y\}$
Disjoint sets:
$X \cap Y=\varnothing$
Difference of sets: $\quad X-Y=\{x / x \in X$ and $x \notin Y\}$
Complement of a subset: $\quad X \supset Y ; \quad X \backslash Y=X-Y$
Cartesian product:
$X \times Y=\{(x, y) / x \in X$ and $y \in Y\}$
Mapping:
$f: X \rightarrow Y ; \quad(x \in X) \rightarrow y=f(x) \in Y$

Domain/range of f :
$D(f)=X, R(f)=f(X)=\{f(x) / x \in X\} \subseteq Y ;$
f is defined in X and has values in Y;
$y=f(x)$ is the image of x under f
Composite mapping: $\quad f: X \rightarrow Y, \quad g: Y \rightarrow Z$;
$f_{\circ} g: X \rightarrow Z ; \quad(x \in X) \rightarrow g(f(x)) \in Z$
Injective (1-1) mapping: $\quad f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$, or
$x_{1} \neq x_{2} \Leftrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$
Surjective (onto) mapping: $\quad f(X)=Y$
Bijective mapping: $\quad f$ is both injective and surjective \Rightarrow invertible
Identity mapping:
$f_{i d}: X \rightarrow X ; \quad f_{i d}(x)=x, \quad \forall x \in X$
Internal operation on $X: \quad X \times X \rightarrow X ; \quad[(x, y) \in X \times X] \rightarrow z \in X$
External operation on $X: \quad A \times X \rightarrow X ; \quad[(a, x) \in A \times X] \rightarrow y=a \cdot x \in X$

Groups

A group is a set G, together with an internal operation $G \times G \rightarrow G ;(x, y) \rightarrow z=x \cdot y$, such that:

1. The operation is associative: $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
2. $\exists e \in G$ (identity) : $x \cdot e=e \cdot x=x, \forall x \in G$
3. $\forall x \in G, \exists x^{-1} \in G$ (inverse): $x^{-1} \cdot x=x \cdot x^{-1}=e$

A group G is abelian or commutative if $x \cdot y=y \cdot x, \forall x, y \in G$.
A subset $S \subseteq G$ is a subgroup of G if S is itself a group (clearly, then, S contains the identity e of G, as well as the inverse of every element of S).

Vector space over R

Let $V=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \ldots\}$, and let $a, b, c, \ldots \in R$. Consider an internal operation + and an external operation • on V :

$$
\begin{array}{ll}
+: V \times V \rightarrow V ; & \boldsymbol{x}+\boldsymbol{y}=z \\
\cdot: R \times V \rightarrow V ; & a \cdot \boldsymbol{x}=\boldsymbol{y}
\end{array}
$$

Then, V is a vector space over R iff

1. V is a commutative group with respect to + . The identity element is denoted $\mathbf{0}$, while the inverse of \boldsymbol{x} is denoted $-\boldsymbol{x}$.
2. The operation \cdot satisfies the following:

$$
\begin{aligned}
& a \cdot(b \cdot \boldsymbol{x})=(a b) \cdot \boldsymbol{x} \\
& (a+b) \cdot \boldsymbol{x}=a \cdot \boldsymbol{x}+b \cdot \boldsymbol{x} \\
& a \cdot(\boldsymbol{x}+\boldsymbol{y})=a \cdot \boldsymbol{x}+a \cdot \boldsymbol{y} \\
& 1 \cdot \boldsymbol{x}=\boldsymbol{x}, \quad 0 \cdot \boldsymbol{x}=\mathbf{0}
\end{aligned}
$$

A set $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{k}\right\}$ of elements of V is linearly independent iff the equation ${ }^{1}$

$$
c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}+\ldots+c_{k} \boldsymbol{x}_{k}=0
$$

can only be satisfied for $c_{1}=c_{2}=\ldots=c_{k}=0$; otherwise, the set is linearly dependent. The dimension $\operatorname{dim} V$ of V is the largest number of vectors in V that constitute a linearly independent set. If $\operatorname{dim} V=n$, then any system $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ of n linearly independent elements is a basis for V, and any $\boldsymbol{x} \in V$ can be uniquely expressed as $\boldsymbol{x}=c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+\ldots+c_{n} \boldsymbol{e}_{n}$.

A subset $S \subseteq V$ is a subspace of V if S is itself a vector space under the operations (+) and (.). In particular, the sum $\boldsymbol{x}+\boldsymbol{y}$ of any two elements of S, as well as the scalar multiple $a \boldsymbol{x}$ and the inverse $-\boldsymbol{x}$ of any element \boldsymbol{x} of S, must belong to S. Clearly, this set must contain the identity $\mathbf{0}$ of V. If S is a subspace of V, then $\operatorname{dim} S \leq \operatorname{dim} V$. In particular, S coincides with V iff $\operatorname{dim} S=\operatorname{dim} V$.

[^0]
Functionals

A functional ω on a vector space V is a mapping $\omega: V \rightarrow R ;(\boldsymbol{x} \in V) \rightarrow t=\boldsymbol{\omega}(\boldsymbol{x}) \in R$. The functional ω is linear if $\boldsymbol{\omega}(a \cdot \boldsymbol{x}+b \cdot \boldsymbol{y})=a \cdot \boldsymbol{\omega}(\boldsymbol{x})+b \cdot \boldsymbol{\omega}(\boldsymbol{y})$. The collection of all linear functionals on V is called the dual space of V, denoted V^{*}. It is itself a vector space over R, and $\operatorname{dim} V^{*}=\operatorname{dim} V$.

Algebras

A real algebra A is a vector space over R equipped with a binary operation $(\cdot \mid \cdot): A \times A \rightarrow A ;(\boldsymbol{x} \mid \boldsymbol{y})=\boldsymbol{z}$, such that, for $a, b \in R$,

$$
\begin{aligned}
(a \cdot \boldsymbol{x}+b \cdot \boldsymbol{y} \mid z) & =a \cdot(\boldsymbol{x} \mid z)+b \cdot(\boldsymbol{y} \mid z) \\
(\boldsymbol{x} \mid a \cdot \boldsymbol{y}+b \cdot z) & =a \cdot(\boldsymbol{x} \mid \boldsymbol{y})+b \cdot(\boldsymbol{x} \mid z)
\end{aligned}
$$

An algebra is commutative if, for any two elements $\boldsymbol{x}, \boldsymbol{y},(\boldsymbol{x} \mid \boldsymbol{y})=(\boldsymbol{y} \mid \boldsymbol{x})$; it is associative if, for any $x, y, z,(x \mid(y \mid z))=((x \mid y) \mid z)$.

Example: The set $\Lambda^{0}\left(R^{n}\right)$ of all functions on R^{n} is a commutative, associative algebra. The multiplication operation $(\cdot \mid \cdot): \Lambda^{0}\left(R^{n}\right) \times \Lambda^{0}\left(R^{n}\right) \rightarrow \Lambda^{0}\left(R^{n}\right)$ is defined by

$$
(f \mid g)\left(x^{1}, \ldots, x^{n}\right)=f\left(x^{1}, \ldots, x^{n}\right) g\left(x^{1}, \ldots, x^{n}\right) .
$$

Example: The set of all $n \times n$ matrices is an associative, non-commutative algebra. The binary operation $(\cdot \mid \cdot)$ is matrix multiplication.

A subspace S of A is a subalgebra of A if S is itself an algebra under the same binary operation $(\cdot \mid \cdot)$. In particular, S must be closed under this operation; i.e., $(\boldsymbol{x} \mid \boldsymbol{y}) \in S$ for any $\boldsymbol{x}, \boldsymbol{y}$ in S. We write: $S \subset A$.
A subalgebra $S \subset A$ is an ideal of A iff $(\boldsymbol{x} \mid \boldsymbol{y}) \in S$ and $(\boldsymbol{y} \mid \boldsymbol{x}) \in S$, for any $\boldsymbol{x} \in S, \boldsymbol{y} \in A$.

Modules

Note first that R is an associative, commutative algebra under the usual operations of addition and multiplication. Thus, a vector space over R is a vector space over an associative, commutative algebra. More generally, a module M over A is a vector space over an associative but (generally) non-commutative algebra. In particular, the external operation (.) on M is defined by

$$
\cdot: A \times M \rightarrow M ; \quad a \cdot \boldsymbol{x}=\boldsymbol{y} \quad(a \in A ; \boldsymbol{x}, \boldsymbol{y} \in M) .
$$

Example: The collection of all n-dimensional column matrices, with A taken to be the algebra of $n \times n$ matrices, and with matrix multiplication as the external operation.

Vector fields

A vector field \boldsymbol{V} on R^{n} is a map from a domain of R^{n} into R^{n} :

$$
\boldsymbol{V}: R^{n} \supseteq U \rightarrow R^{n} ; \quad\left[\boldsymbol{x} \equiv\left(x^{1}, \ldots, x^{n}\right) \in U\right] \rightarrow \boldsymbol{V}(\boldsymbol{x}) \equiv\left(V^{1}\left(x^{k}\right), \ldots, V^{n}\left(x^{k}\right)\right) \in R^{n}
$$

The vector \boldsymbol{x} represents a point in U, with coordinates $\left(x^{1}, \ldots, x^{n}\right)$. The functions $V^{i}\left(x^{k}\right)$ $(i=1, \ldots, n)$ are the components of \boldsymbol{V} in the coordinate system $\left(x^{k}\right)$.

Given two vector fields \boldsymbol{U} and \boldsymbol{V}, we can construct a new vector field $\boldsymbol{W}=\boldsymbol{U}+\boldsymbol{V}$ such that $\boldsymbol{W}(\boldsymbol{x})=\boldsymbol{U}(\boldsymbol{x})+\boldsymbol{V}(\boldsymbol{x})$. The components of \boldsymbol{W} are the sums of the respective components of \boldsymbol{U} and \boldsymbol{V}.

Given a vector field \boldsymbol{V} and a constant $a \in R$, we can construct a new vector field $\boldsymbol{Z}=a \boldsymbol{V}$ such that $\boldsymbol{Z}(\boldsymbol{x})=a \boldsymbol{V}(\boldsymbol{x})$. The components of \boldsymbol{Z} are scalar multiples (by a) of those of \boldsymbol{V}.

It follows from the above that the collection of all vector fields on R^{n} is a vector space over R.

More generally, given a vector field \boldsymbol{V} and a function $f \in \Lambda^{0}\left(R^{n}\right)$, we can construct a new vector field $\boldsymbol{Z}=f \boldsymbol{V}$ such that $\boldsymbol{Z}(\boldsymbol{x})=f(\boldsymbol{x}) \boldsymbol{V}(\boldsymbol{x})$. Given that $\Lambda^{0}\left(R^{n}\right)$ is an associative algebra, we conclude that the collection of all vector fields on R^{n} is a module over $\Lambda^{0}\left(R^{n}\right)$ (in this particular case, the algebra $\Lambda^{0}\left(R^{n}\right)$ is commutative).

A note on linear independence:

Let $\left\{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\mathrm{r}}\right\} \equiv\left\{\boldsymbol{V}_{a}\right\}$ be a collection of vector fields on R^{n}.
(a) The set $\left\{\boldsymbol{V}_{a}\right\}$ is linearly dependent over R (linearly dependent with constant coefficients) iff there exist real constants c_{1}, \ldots, c_{r}, not all zero, such that

$$
c_{1} \boldsymbol{V}_{1}(\boldsymbol{x})+\ldots+c_{r} \boldsymbol{V}_{r}(\boldsymbol{x})=0, \quad \forall \boldsymbol{x} \in R^{n} .
$$

If the above relation is satisfied only for $c_{1}=\ldots=c_{r}=0$, the set $\left\{\boldsymbol{V}_{a}\right\}$ is linearly independent over R.
(b) The set $\left\{\boldsymbol{V}_{a}\right\}$ is linearly dependent over $\Lambda^{0}\left(R^{n}\right)$ iff there exist functions $f_{1}\left(x^{k}\right), \ldots$, $f_{r}\left(x^{k}\right)$, not all identically zero over R^{n}, such that

$$
f_{1}\left(x^{k}\right) \boldsymbol{V}_{1}(\boldsymbol{x})+\ldots+f_{r}\left(x^{k}\right) \boldsymbol{V}_{r}(\boldsymbol{x})=0, \quad \forall \boldsymbol{x} \equiv\left(x^{k}\right) \in R^{n}
$$

If this relation is satisfied only for $f_{1}\left(x^{k}\right)=\ldots=f_{r}\left(x^{k}\right) \equiv 0$, the set $\left\{\boldsymbol{V}_{a}\right\}$ is linearly independent over $\Lambda^{0}\left(R^{n}\right)$.

There can be at most n elements in a linearly independent system over $\Lambda^{0}\left(R^{n}\right)$. These elements form a basis $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\} \equiv\left\{\boldsymbol{e}_{k}\right\}$ for the module of all vector fields on R^{n}. An element of this module, i.e. an arbitrary vector field \boldsymbol{V}, is written as a linear combination of the $\left\{\boldsymbol{e}_{k}\right\}$ with coefficients $V^{k} \in \Lambda^{0}\left(R^{n}\right)$. Thus, at any point $\boldsymbol{x} \equiv\left(x^{k}\right) \in R^{n}$,

$$
\boldsymbol{V}(\boldsymbol{x})=V^{1}\left(x^{k}\right) \boldsymbol{e}_{1}+\ldots+V^{n}\left(x^{k}\right) \boldsymbol{e}_{n} \equiv\left(V^{1}\left(x^{k}\right), \ldots, V^{n}\left(x^{k}\right)\right) .
$$

In particular, in the basis $\left\{\boldsymbol{e}_{k}\right\}$,

$$
\boldsymbol{e}_{1} \equiv(1,0,0, \ldots, 0), \quad \boldsymbol{e}_{2} \equiv(0,1,0, \ldots, 0), \ldots, \boldsymbol{e}_{n} \equiv(0,0, \ldots, 0,1) .
$$

Example: Let $n=3$, i.e., $R^{n}=R^{3}$. Call $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\} \equiv\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$. Let \boldsymbol{V} be a vector field on R^{3}. Then, at any point $\boldsymbol{x} \equiv(x, y, z) \in R^{3}$,

$$
\boldsymbol{V}(\boldsymbol{x})=V_{x}(x, y, z) \boldsymbol{i}+V_{y}(x, y, z) \boldsymbol{j}+V_{z}(x, y, z) \boldsymbol{k} \equiv\left(V_{x}, V_{y}, V_{z}\right) .
$$

Now, consider the six vector fields

$$
\boldsymbol{V}_{1}=\boldsymbol{i}, \boldsymbol{V}_{2}=\boldsymbol{j}, \boldsymbol{V}_{3}=\boldsymbol{k}, \boldsymbol{V}_{4}=x \boldsymbol{j}-y \boldsymbol{i}, \boldsymbol{V}_{5}=y \boldsymbol{k}-z \boldsymbol{j}, \boldsymbol{V}_{6}=z \boldsymbol{i}-x \boldsymbol{k} .
$$

Clearly, the $\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}\right\}$ are linearly independent over $\Lambda^{0}\left(R^{3}\right)$, since they constitute the basis $\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$. On the other hand, the $\boldsymbol{V}_{4}, \boldsymbol{V}_{5}, \boldsymbol{V}_{6}$ are separately linearly dependent on the $\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}\right\}$ over $\Lambda^{0}\left(R^{3}\right)$. Moreover, the set $\left\{\boldsymbol{V}_{4}, \boldsymbol{V}_{5}, \boldsymbol{V}_{6}\right\}$ is also linearly dependent over $\Lambda^{0}\left(R^{3}\right)$, since $z \boldsymbol{V}_{4}+x \boldsymbol{V}_{5}+y \boldsymbol{V}_{6}=0$. Thus, the set $\left\{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{6}\right\}$ is linearly dependent over $\Lambda^{0}\left(R^{3}\right)$. On the other hand, the system $\left\{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{6}\right\}$ is linearly independent over R, since the equation $c_{1} \boldsymbol{V}_{1}+\ldots+c_{6} \boldsymbol{V}_{6}=0$, with $c_{1}, \ldots, c_{6} \in R$ (constant coefficients), can only be satisfied for $c_{1}=\ldots=c_{6}=0$. In general,
there is an infinite number of linearly independent vector fields on R^{n} over R, but only n linearly independent fields over $\Lambda^{0}\left(R^{n}\right)$.

Derivation on an algebra

Let L be an operation on an algebra A (an operator on A):

$$
L: A \rightarrow A ; \quad(\boldsymbol{x} \in A) \rightarrow \boldsymbol{y}=L \boldsymbol{x} \in A .
$$

L is a derivation on A iff, $\forall \boldsymbol{x}, \boldsymbol{y} \in A$ and $a, b \in R$,

$$
\begin{array}{ll}
L(a \boldsymbol{x}+b \boldsymbol{y})=a L(\boldsymbol{x})+b L(\boldsymbol{y}) & \text { (linearity) } \\
L(\boldsymbol{x} \mid \boldsymbol{y})=(L \boldsymbol{x} \mid \boldsymbol{y})+(\boldsymbol{x} \mid L \boldsymbol{y}) & \text { (Leibniz rule) }
\end{array}
$$

Example: Let $A=\Lambda^{0}\left(R^{n}\right)=\left\{f\left(x^{1}, \ldots, x^{n}\right)\right\}$, and let L be the linear operator

$$
L=\varphi^{1}\left(x^{k}\right) \partial \partial \partial x^{1}+\ldots+\varphi^{n}\left(x^{k}\right) \partial / \partial x^{n} \equiv \varphi^{i}\left(x^{k}\right) \partial \partial \partial x^{i},
$$

where the $\varphi^{i}\left(x^{k}\right)$ are given functions. As can be shown,

$$
L\left[f\left(x^{k}\right) g\left(x^{k}\right)\right]=\left[L f\left(x^{k}\right)\right] g\left(x^{k}\right)+f\left(x^{k}\right) L g\left(x^{k}\right) .
$$

Hence, L is a derivation on $\Lambda^{0}\left(R^{n}\right)$.

Lie algebra

An algebra \mathcal{L} over R is a (real) Lie algebra with binary operation [•, $\cdot]: \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$ (Lie bracket) iff this operation satisfies the properties:

$$
\begin{aligned}
& {[a \boldsymbol{x}+b \boldsymbol{y}, z]=a[\boldsymbol{x}, z]+b[\boldsymbol{y}, z]} \\
& {[\boldsymbol{x}, \boldsymbol{y}]=-[\boldsymbol{y}, \boldsymbol{x}]} \\
& {[\boldsymbol{x},[\boldsymbol{y}, z]]+[\boldsymbol{y},[\boldsymbol{z}, \boldsymbol{x}]]+[z,[\boldsymbol{x}, \boldsymbol{y}]]=0}
\end{aligned} \quad \text { (antisymmetry) } \text { (Jacobi identity) }
$$

(where $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{L}$ and $a, b \in R$). Note that, by the antisymmetry of the Lie bracket, the first and third properties are written, alternatively,

$$
\begin{aligned}
& {[\boldsymbol{x}, a \boldsymbol{y}+b z]=a[\boldsymbol{x}, \boldsymbol{y}]+b[\boldsymbol{x}, z]} \\
& {[[\boldsymbol{x}, \boldsymbol{y}], z]+[[\boldsymbol{y}, z], \boldsymbol{x}]+[[z, \boldsymbol{z}], \boldsymbol{y}]=0 .}
\end{aligned}
$$

A Lie algebra is a non-associative algebra, since, as follows by the above properties,

$$
[x,[y, z]] \neq[[x, y], z] .
$$

Example: The algebra of $n \times n$ matrices, with $[A, B]=A B-B A$ (commutator).
Example: The algebra of all vectors in R^{3}, with $[\boldsymbol{a}, \boldsymbol{b}]=\boldsymbol{a} \times \boldsymbol{b}$ (vector product).

Lie algebra of derivations

Consider the algebra $A=\Lambda^{0}\left(R^{n}\right)=\left\{f\left(x^{1}, \ldots, x^{n}\right)\right\}$. Consider also the set $D(A)$ of linear operators on A, of the form

$$
L=\varphi^{i}\left(x^{k}\right) \partial \partial \partial x^{i} \quad(\text { sum on } i=1,2, \ldots, n) .
$$

These first-order differential operators are derivations on A (the Leibniz rule is satisfied). Now, given two such operators L_{1}, L_{2}, we construct the linear operator (Lie bracket of L_{1} and L_{2}), as follows:

$$
\begin{aligned}
& {\left[L_{1}, L_{2}\right]=L_{1} L_{2}-L_{2} L_{1} ;} \\
& {\left[L_{1}, L_{2}\right] f\left(x^{k}\right)=L_{1}\left(L_{2} f\left(x^{k}\right)\right)-L_{2}\left(L_{1} f\left(x^{k}\right)\right) .}
\end{aligned}
$$

It can be shown that $\left[L_{1}, L_{2}\right]$ is a first-order differential operator (a derivation), hence is a member of $D(A)$. (This is not the case with second-order operators like $L_{1} L_{2}$!) Moreover, the Lie bracket of operators satisfies all the properties of the Lie bracket of a general Lie algebra (such as antisymmetry and Jacobi identity). It follows that
the set $D(A)$ of derivations on $\Lambda^{0}\left(R^{n}\right)$ is a Lie algebra, with binary operation defined as the Lie bracket of operators.

Direct sum of subspaces

Let V be a vector space over a field K (where K may be R or C), of dimension $\operatorname{dim} V=n$. Let S_{1}, S_{2} be disjoint (i.e., $S_{1} \cap S_{2}=\{\mathbf{0}\}$) subspaces of V. We say that V is the direct sum of S_{1} and S_{2} if each vector of V can be uniquely represented as the sum of a vector of S_{1} and a vector of S_{2}. We write: $V=S_{1} \oplus S_{2}$. In terms of dimensions, $\operatorname{dim} V=\operatorname{dim} S_{1}+\operatorname{dim} S_{2}$. We similarly define the vector sum of three subspaces of V, each of which is disjoint from the direct sum of the other two (i.e., $S_{1} \cap\left(S_{2} \oplus S_{3}\right)=\{\mathbf{0}\}$, etc.).

Homomorphism of vector spaces

Let V, W be vector spaces over a field K. A mapping $\Phi: V \rightarrow W$ is said to be a linear mapping or homomorphism if it preserves linear operations, i.e.,

$$
\Phi(x+y)=\Phi(x)+\Phi(y), \quad \Phi(k x)=k \Phi(x), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in V \text { and } k \in K .
$$

A homomorphism which is also bijective (1-1) is called an isomorphism.
The set of vectors $\boldsymbol{x} \in V$ mapping under Φ into the zero of W is called the kernel of the homomorphism Φ :

$$
\operatorname{Ker} \Phi=\{\boldsymbol{x} \in V: \Phi(\boldsymbol{x})=\mathbf{0}\} .
$$

Note that $\Phi(\mathbf{0})=\mathbf{0}$, for any homomorphism (clearly, the two zeros refer to different vector spaces). Thus, in general, $\mathbf{0} \in \operatorname{Ker} \Phi$.

If $\operatorname{Ker} \Phi=\{\mathbf{0}\}$, then the homomorphism Φ is also an isomorphism of V onto a subspace of W. If, moreover, $\operatorname{dim} V=\operatorname{dim} W$, then the map $\Phi: V \rightarrow W$ is itself an isomorphism. In this case, $\operatorname{Im} \Phi=W$, where, in general, Im Φ (image of the homomorphism) is the collection of images of all vectors of V under the map Φ.

The algebra of linear operators

Let V be a vector space over a field K. A linear operator \boldsymbol{A} on V is a homomorphism $A: V \rightarrow V$. Thus,

$$
\boldsymbol{A}(\boldsymbol{x}+\boldsymbol{y})=\boldsymbol{A}(\boldsymbol{x})+\boldsymbol{A}(\boldsymbol{y}), \quad \boldsymbol{A}(k \boldsymbol{x})=k \boldsymbol{A}(\boldsymbol{x}), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in V \text { and } k \in K .
$$

The sum $\boldsymbol{A}+\boldsymbol{B}$ and the scalar multiplication $k \boldsymbol{A}(k \in K)$ are linear operators defined by

$$
(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{x}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{x}, \quad(k \boldsymbol{A}) \boldsymbol{x}=k(\boldsymbol{A} \boldsymbol{x}) .
$$

Under these operations, the set $O p(V)$ of all linear operators on V is a vector space. The zero element of that space is a zero operator $\boldsymbol{0}$ such that $\mathbf{0 x}=\mathbf{0}, \forall \boldsymbol{x} \in V$.

Since \boldsymbol{A} and \boldsymbol{B} are mappings, their composition may be defined. This is regarded as their product $\boldsymbol{A B}$:

$$
(\boldsymbol{A B}) \boldsymbol{x} \equiv \boldsymbol{A}(\boldsymbol{B} \boldsymbol{x}), \quad \forall \boldsymbol{x} \in V .
$$

Note that $\boldsymbol{A B}$ is a linear operator on V, hence belongs to $O p(V)$. In general, operator products are non-commutative: $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$. However, they are associative and distributive over addition:

$$
(A B) C=A(B C) \equiv A B C, \quad A(B+C)=A B+A C
$$

The identity operator \boldsymbol{E} is the mapping of $O p(V)$ which leaves every element of V fixed: $\boldsymbol{E} \boldsymbol{x}=\boldsymbol{x}$. Thus, $\boldsymbol{A} \boldsymbol{E}=\boldsymbol{E} \boldsymbol{A}=\boldsymbol{A}$. Operators of the form $k \boldsymbol{E}(k \in K)$, called scalar operators, are commutative with all operators. In fact, any operator commutative with every operator of $O p(V)$ is a scalar operator.

It follows from the above that the set $O p(V)$ of all linear operators on a given vector space V is an algebra. This algebra is associative but (generally) non-commutative.

An operator \boldsymbol{A} is said to be invertible if it represents a bijective (1-1) mapping, i.e., if it is an isomorphism of V onto itself. In this case, an inverse operator \boldsymbol{A}^{-1} exists such that $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{E}$. Practically this means that, if \boldsymbol{A} maps $\boldsymbol{x} \in V$ onto $\boldsymbol{y} \in V$, then \boldsymbol{A}^{-1} maps \boldsymbol{y} back onto \boldsymbol{x}. For an invertible operator $\boldsymbol{A}, \operatorname{Ker} \boldsymbol{A}=\{\mathbf{0}\}$ and $\operatorname{Im} \boldsymbol{A}=V$.

Matrix representation of a linear operator

Let \boldsymbol{A} be a linear operator on V. Let $\left\{\boldsymbol{e}_{i}\right\}(i=1, \ldots, n)$ be a basis of V. Let

$$
\boldsymbol{A} \boldsymbol{e}_{k}=\boldsymbol{e}_{i} A_{i k} \quad(\text { sum on } i)
$$

where the $A_{i k}$ are real or complex, depending on whether V is a vector space over R or C. The $n \times n$ matrix $A=\left[A_{i k}\right]$ is called the matrix of the operator \boldsymbol{A} in the basis $\left\{\boldsymbol{e}_{i}\right\}$.

Now, let $\boldsymbol{x}=x_{i} \boldsymbol{e}_{i}$ (sum on i) be a vector in V, and let $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$. If $\boldsymbol{y}=y_{i} \boldsymbol{e}_{i}$, then, by the linearity of \boldsymbol{A},

$$
y_{i}=A_{i k} x_{k} \quad(\operatorname{sun} \text { on } k) .
$$

In matrix form,

$$
[y]_{n \times 1}=[A]_{n \times n}[x]_{n \times 1} \text {. }
$$

Next, let $\boldsymbol{A}, \boldsymbol{B}$ be linear operators on V. Define their product $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ by

$$
\boldsymbol{C x}=(\boldsymbol{A B}) \boldsymbol{x} \equiv \boldsymbol{A}(\boldsymbol{B} \boldsymbol{x}), \quad \boldsymbol{x} \in V .
$$

Then, for any basis $\left\{\boldsymbol{e}_{i}\right\}, \quad \boldsymbol{C} \boldsymbol{e}_{k}=\boldsymbol{A}\left(\boldsymbol{B} \boldsymbol{e}_{k}\right)=\boldsymbol{e}_{i} A_{i j} B_{j k} \equiv \boldsymbol{e}_{i} C_{i k} \quad \Rightarrow$

$$
C_{i k}=A_{i j} B_{j k}
$$

or, in matrix form,

$$
C=A B .
$$

That is,
the matrix of the product of two operators is the product of the matrices of these operators, in any basis of V.

Consider now a change of basis defined by the transition matrix $T=\left[T_{i k}\right]$:

$$
\boldsymbol{e}_{k}^{\prime}=\boldsymbol{e}_{i} T_{i k}
$$

The inverse transformation is

$$
\boldsymbol{e}_{k}=\boldsymbol{e}_{i}^{\prime}\left(T^{-1}\right)_{i k}
$$

Under this basis change, the matrix A of an operator \boldsymbol{A} transforms as

$$
A^{\prime}=T^{-1} A T \quad \text { (similarity transformation) } .
$$

Under basis transformations, the trace and the determinant of A remain unchanged:

$$
\operatorname{tr} A^{\prime}=\operatorname{tr} A \quad, \quad \operatorname{det} A^{\prime}=\operatorname{det} A
$$

An operator \boldsymbol{A} is said to be nonsingular (singular) if $\operatorname{det} A \neq 0(\operatorname{det} A=0)$. Note that this is a basis-independent property. Any nonsingular operator is invertible, i.e., there exists an inverse operator $\boldsymbol{A}^{-1} \in O p(V)$ such that $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{E}$. Since an invertible operator represents a bijective mapping (i.e., both 1-1 and onto), it follows that $\operatorname{Ker} \boldsymbol{A}=\{\boldsymbol{0}\}$ and $\operatorname{Im} \boldsymbol{A}=V$. If \boldsymbol{A} is invertible (nonsingular), then, for any basis $\left\{\boldsymbol{e}_{i}\right\}$ $(i=1, \ldots, n)$ of V, the vectors $\left\{\boldsymbol{A} \boldsymbol{e}_{i}\right\}$ are linearly independent and hence also constitute a basis.

Invariant subspaces and eigenvectors

Let V be an n-dimensional vector space over a field K, and let \boldsymbol{A} be a linear operator on V. The subspace S of V is said to be invariant under \boldsymbol{A} if, for every vector \boldsymbol{x} of S, the vector $\boldsymbol{A x}$ again belongs to S. Symbolically, $A S \subseteq S$.

A vector $\boldsymbol{x} \neq \mathbf{0}$ is said to be an eigenvector of \boldsymbol{A} if it generates a one-dimensional invariant subspace of V under \boldsymbol{A}. This means that an element $\lambda \in K$ exists, such that

$$
\boldsymbol{A x}=\lambda \boldsymbol{x} .
$$

The element λ is called an eigenvalue of \boldsymbol{A}, to which eigenvalue the eigenvector \boldsymbol{x} belongs. Note that, trivially, the null vector $\mathbf{0}$ is an eigenvector of \boldsymbol{A}, belonging to any
eigenvalue λ. The set of all eigenvectors of \boldsymbol{A}, belonging to a given λ, is a subspace of V called the proper subspace belonging to λ.

It can be shown that the eigenvalues of \boldsymbol{A} are basis-independent quantities. Indeed, let $A=\left[A_{i k}\right]$ be the $(n \times n)$ matrix representation of \boldsymbol{A} in some basis $\left\{\boldsymbol{e}_{i}\right\}$ of V, and let $\boldsymbol{x}=x_{i} \boldsymbol{e}_{i}$ be an eigenvector belonging to λ. We denote by $X=\left[x_{i}\right]$ the column vector representing \boldsymbol{x} in that basis. The eigenvalue equation for \boldsymbol{A} is written, in matrix form,

$$
A_{i k} x_{k}=\lambda x_{i} \quad \text { or } \quad A X=\lambda X .
$$

This is written

$$
\left(A-\lambda 1_{n}\right) X=0 .
$$

This equation constitutes a linear homogeneous system for $X=\left[x_{i}\right]$, which has a nontrivial solution iff

$$
\operatorname{det}\left(A-\lambda 1_{n}\right)=0 .
$$

This polynomial equation determines the eigenvalues $\lambda_{i}(i=1, \ldots, n)$ (not necessarily all different from each-other) of \boldsymbol{A}. Since the determinant of the matrix representation of an operator [in particular, of the operator $(\boldsymbol{A}-\lambda \boldsymbol{E})$ for any given λ] is a basisindependent quantity, it follows that, if the above equation is satisfied for a certain λ in a certain basis (where \boldsymbol{A} is represented by the matrix A), it will also be satisfied for the same λ in any other basis (where \boldsymbol{A} is represented by another matrix, say, A^{\prime}). We conclude that the eigenvalues of an operator are a property of the operator itself and do not depend on the choice of basis of V.

If we can find n linearly independent eigenvectors $\left\{\boldsymbol{x}_{i}\right\}$ of \boldsymbol{A}, belonging to the corresponding eigenvalues λ_{i}, we can use these vectors to define a basis for V. In this basis, the matrix representation of \boldsymbol{A} has a particularly simple diagonal form:

$$
A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Using this expression, and the fact that the quantities $\operatorname{trA}, \operatorname{det} A$ and λ_{i} are invariant under basis transformations, we conclude that, in any basis of V,

$$
\operatorname{tr} A=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}, \quad \operatorname{det} A=\lambda_{1} \lambda_{2} \ldots \lambda_{n} .
$$

We note, in particular, that all eigenvalues of an invertible (nonsingular) operator are nonzero. Indeed, if even one is zero, then $\operatorname{det} A=0$ and \boldsymbol{A} is singular.

An operator \boldsymbol{A} is called nilpotent if $\boldsymbol{A}^{m}=\mathbf{0}$ for some natural number $m>1$. The smallest such value of m is called the degree of nilpotency, and it cannot exceed n. All eigenvalues of a nilpotent operator are zero. Thus, such an operator is singular (noninvertible).

An operator \boldsymbol{A} is called idempotent (or projection operator) if $\boldsymbol{A}^{2}=\boldsymbol{A}$. It follows that $\boldsymbol{A}^{m}=\boldsymbol{A}$, for any natural number m. The eigenvalues of an idempotent operator can take the values 0 or 1 .

BASIC MATRIX PROPERTIES

$$
\begin{aligned}
& (A+B)^{T}=A^{T}+B^{T} ; \quad(A B)^{T}=B^{T} A^{T} \\
& (A+B)^{\dagger}=A^{\dagger}+B^{\dagger} ; \quad(A B)^{\dagger}=B^{\dagger} A^{\dagger} \quad \text { where } M^{\dagger} \equiv\left(M^{T}\right)^{*}=\left(M^{*}\right)^{T} \\
& (k A)^{T}=k A^{T} ; \quad(k A)^{\dagger}=k^{*} A^{\dagger} \quad(k \in C) \\
& (A B)^{-1}=B^{-1} A^{-1} ; \quad\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} ; \quad\left(A^{\dagger}\right)^{-1}=\left(A^{-1}\right)^{\dagger} \\
& {[A, B]^{T}=\left[B^{T}, A^{T}\right] ; \quad[A, B]^{\dagger}=\left[B^{\dagger}, A^{\dagger}\right]} \\
& A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A \quad(\operatorname{det} A \neq 0) \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]} \\
& \operatorname{tr}(\kappa A+\lambda B)=\kappa \operatorname{tr} A+\lambda \operatorname{tr} B \\
& \operatorname{tr} A^{T}=\operatorname{tr} A ; \quad \operatorname{tr} A^{\dagger}=(\operatorname{tr} A)^{*} \\
& \operatorname{tr}(A B)=\operatorname{tr}(B A), \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B), \quad \text { etc. } \\
& \operatorname{tr}[A, B]=0 \\
& \operatorname{det} A^{T}=\operatorname{det} A ; \quad \operatorname{det} A^{\dagger}=(\operatorname{det} A)^{*} \\
& \operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det} A \cdot \operatorname{det} B \\
& \operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A \\
& \operatorname{det}(c A)=c^{n} \operatorname{det} A \quad(c \in C, A \in g l(n, C)) \\
& \operatorname{If} \operatorname{any} \text { row or } \operatorname{column} \text { of } A \text { is multiplied by } c, \text { then so is } \operatorname{det} A .
\end{aligned}
$$

$[A, B]=-[B, A] \equiv A B-B A$
$[A, B+C]=[A, B]+[A, C] ; \quad[A+B, C]=[A, C]+[B, C]$
$[A, B C]=[A, B] C+B[A, C] ; \quad[A B, C]=A[B, C]+[A, C] B$
$[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$
$[[A, B], C]+[[B, C], A]+[[C, A], B]=0$

Let $A=A(t)=\left[a_{i j}(t)\right], B=B(t)=\left[b_{i j}(t)\right]$, be $(n \times n)$ matrices. The derivative of A (similarly, of B) is the $(n \times n)$ matrix $d A / d t$, with elements

$$
\left(\frac{d A}{d t}\right)_{i j}=\frac{d}{d t} a_{i j}(t) .
$$

The integral of A (similarly, of B) is the $(n \times n)$ matrix defined by $\left(\int A(t) d t\right)_{i j}=\int a_{i j}(t) d t$.

$$
\begin{aligned}
& \frac{d}{d t}(A \pm B)=\frac{d A}{d t} \pm \frac{d B}{d t} ; \quad \frac{d}{d t}(A B)=\frac{d A}{d t} B+A \frac{d B}{d t} \\
& \frac{d}{d t}[A, B]=\left[\frac{d A}{d t}, B\right]+\left[A, \frac{d B}{d t}\right] \\
& \frac{d}{d t}\left(A^{-1}\right)=-A^{-1} \frac{d A}{d t} A^{-1} \Rightarrow d\left(A^{-1}\right)=-A^{-1}(d A) A^{-1} \\
& \operatorname{tr}\left(\frac{d A}{d t}\right)=\frac{d}{d t}(\operatorname{tr} A)
\end{aligned}
$$

Let $A=A(x, y)$. Call $\partial A / \partial x \equiv \partial_{x} A \equiv A_{x}$, etc.:
$\partial_{x}\left(A^{-1} A_{y}\right)-\partial_{y}\left(A^{-1} A_{x}\right)+\left[A^{-1} A_{x}, A^{-1} A_{y}\right]=0$
$\partial_{x}\left(A_{y} A^{-1}\right)-\partial_{y}\left(A_{x} A^{-1}\right)-\left[A_{x} A^{-1}, A_{y} A^{-1}\right]=0$
$A\left(A^{-1} A_{x}\right)_{y} A^{-1}=\left(A_{y} A^{-1}\right)_{x} \Leftrightarrow A^{-1}\left(A_{y} A^{-1}\right)_{x} A=\left(A^{-1} A_{x}\right)_{y}$
$e^{A} \equiv \exp A=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}=1+A+\frac{A^{2}}{2}+\cdots$
$B e^{A} B^{-1}=e^{B A B^{-1}}$
$\left(e^{A}\right)^{*}=e^{A^{*}} ; \quad\left(e^{A}\right)^{T}=e^{A^{T}} ; \quad\left(e^{A}\right)^{\dagger}=e^{A^{\dagger}} ; \quad\left(e^{A}\right)^{-1}=e^{-A}$
$e^{A} e^{B}=e^{B} e^{A}=e^{A+B}$ when $[A, B]=0$
In general, $e^{A} e^{B}=e^{C}$ where

$$
C=A+B+\frac{1}{2}[A, B]+\frac{1}{12}([A,[A, B]]+[B,[B, A]])+\cdots
$$

By definition, $\log B=A \Leftrightarrow B=e^{A}$.

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{trA} A} \Leftrightarrow \operatorname{det} B=e^{\operatorname{tr}(\log B)} \Leftrightarrow \operatorname{tr}(\log B)=\log (\operatorname{det} B)
$$

$\operatorname{det}(1+\delta A) \simeq 1+\operatorname{tr} \delta A$, for infinitesimal δA
$\operatorname{tr}\left(A^{-1} A_{x}\right)=\operatorname{tr}\left(A_{x} A^{-1}\right)=\operatorname{tr}(\log A)_{x}=[\operatorname{tr}(\log A)]_{x}=[\log (\operatorname{det} A)]_{x}$

[^0]: ${ }^{1}$ The symbol (\cdot) will often be omitted in the sequel.

