Costas J. Papachristou

MATHEMATICAL HANDBOOK

MATHEMATICAL FORMULAS AND PROPERTIES

Trigonometric formulas

$$\sin^2 A + \cos^2 A = 1$$
; $\tan x = \frac{\sin x}{\cos x}$; $\cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$
 $\cos^2 x = \frac{1}{1 + \tan^2 x}$; $\sin^2 x = \frac{1}{1 + \cot^2 x} = \frac{\tan^2 x}{1 + \tan^2 x}$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} , \cot(A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$
, $\cot 2A = \frac{\cot^2 A - 1}{2 \cot A}$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\sin \frac{A - B}{2}\cos \frac{A + B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = 2\sin\frac{A+B}{2}\sin\frac{B-A}{2}$$

$$\sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos (A+B) + \cos (A-B)]$$

$$\sin A \cos B = \frac{1}{2} [\sin (A+B) + \sin (A-B)]$$

$$\sin(-A) = -\sin A$$
, $\cos(-A) = \cos A$

$$tan(-A) = -tan A$$
, $cot(-A) = -cot A$

$$\sin(\frac{\pi}{2} \pm A) = \cos A$$
, $\cos(\frac{\pi}{2} \pm A) = \mp \sin A$

$$\sin(\pi \pm A) = \mp \sin A$$
, $\cos(\pi \pm A) = -\cos A$

	sin	cos	tan	cot
0	0	1	0	8
$\pi/6=30^{\rm o}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\pi/4=45^{\rm o}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\pi/3=60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\pi/2 = 90^{\circ}$	1	0	∞	0
$\pi = 180^{\circ}$	0	-1	0	8

Basic trigonometric equations

$$\sin x = \sin \alpha \implies \begin{cases} x = \alpha + 2k\pi \\ x = (2k+1)\pi - \alpha \end{cases} \qquad (k = 0, \pm 1, \pm 2, \cdots)$$

$$\cos x = \cos \alpha \implies \begin{cases} x = \alpha + 2k\pi \\ x = 2k\pi - \alpha \end{cases} \qquad (k = 0, \pm 1, \pm 2, \cdots)$$

$$\tan x = \tan \alpha \implies x = \alpha + k\pi$$
 $(k = 0, \pm 1, \pm 2, \cdots)$

$$\cot x = \cot \alpha \implies x = \alpha + k\pi$$
 $(k = 0, \pm 1, \pm 2, \cdots)$

$$\sin x = -\sin \alpha \implies \begin{cases} x = 2k\pi - \alpha \\ x = \alpha + (2k+1)\pi \end{cases} \quad (k = 0, \pm 1, \pm 2, \cdots)$$

$$\cos x = -\cos \alpha \implies \begin{cases} x = (2k+1)\pi - \alpha \\ x = \alpha + (2k+1)\pi \end{cases} \quad (k = 0, \pm 1, \pm 2, \cdots)$$

Hyperbolic functions

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
; $\sinh x = \frac{e^x - e^{-x}}{2}$; $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1}{\coth x}$

$$\cosh^2 x - \sinh^2 x = 1$$

$$\cosh(-x) = \cosh x$$
, $\sinh(-x) = -\sinh x$

Power formulas

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$a^2 - b^2 = (a+b)(a-b)$$

$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3} + \dots + b^{n} \quad (n=1,2,3,\dots)$$

Quadratic equation: $ax^2 + bx + c = 0$

Call $D=b^2-4ac$ (discriminant)

Roots:
$$x = \frac{-b \pm \sqrt{D}}{2a}$$

Roots are real and distinct if D>0; real and equal if D=0; complex conjugate if D<0.

Geometric formulas

A = area or surface area; V = volume; P = perimeter

Parallelogram of base b and altitude h: A=bh

Triangle of base b and altitude h: A = (1/2)bh

Trapezoid of altitude h and parallel sides a and b: A = (1/2)(a+b)h

Circle of radius $r: P=2\pi r$, $A=\pi r^2$

Ellipse of semi-major axis a and semi-minor axis b: $A=\pi ab$

Parallelepiped of base area A and height h: V=Ah

Cylindroid of base area A and height h: V=Ah

Sphere of radius r: $A=4\pi r^2$, $V=(4/3)\pi r^3$

Circular cone of radius r and height h: $V = (1/3)\pi r^2 h$

Properties of inequalities

$$a < b$$
 and $b < c \implies a < c$

$$a \ge b$$
 and $b \ge a \implies a = b$

$$a < b \implies -a > -b$$

$$0 < a < b \implies \frac{1}{a} > \frac{1}{b}$$

$$a < b$$
 and $c \le d \implies a + c < b + d$

$$0 < a < b$$
 and $0 < c \le d \implies ac < bd$

$$0 < a < 1 \implies a > a^2 > a^3 > \cdots$$
, $a^n < 1$, $\sqrt[n]{a} < 1$

$$a > 1 \implies a < a^2 < a^3 < \cdots, \quad a^n > 1, \quad \sqrt[n]{a} > 1$$

$$0 < a < b \implies a^n < b^n, \quad \sqrt[n]{a} < \sqrt[n]{b}$$

Properties of proportions

Assume that $\frac{\alpha}{\beta} = \frac{\gamma}{\delta} = \kappa$. Then,

$$\alpha \delta = \beta \gamma$$
 , $\frac{\alpha \pm \gamma}{\beta \pm \delta} = \kappa$

$$\frac{\alpha \pm \beta}{\beta} = \frac{\gamma \pm \delta}{\delta} \quad , \qquad \qquad \frac{\alpha}{\beta \pm \alpha} = \frac{\gamma}{\delta \pm \gamma}$$

Properties of absolute values of real numbers

$$|a| = a$$
, if $a \ge 0$
= $-a$, if $a < 0$

$$|a| \ge 0$$

$$|-a|=|a|$$

$$|a|^2=a^2$$

$$\sqrt{a^2} = |a|$$

$$|x| \le \varepsilon \iff -\varepsilon \le x \le \varepsilon \quad (\varepsilon > 0)$$

$$|x| \ge a > 0 \iff x \ge a \text{ or } x \le -a$$

$$||a| - |b|| \le |a \pm b| \le |a| + |b|$$

$$|a \cdot b| = |a| |b|$$

$$|a^k| = |a|^k \quad (k \in \mathbb{Z})$$

$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|} \quad (b \neq 0)$$

Properties of powers and logarithms

$$x^0 = 1 \qquad (x \neq 0)$$

$$x^{\alpha}x^{\beta} = x^{\alpha+\beta}$$

$$\frac{x^{\alpha}}{x^{\beta}} = x^{\alpha - \beta}$$

$$\frac{1}{x^{\alpha}} = x^{-\alpha}$$

$$\left(x^{\alpha}\right)^{\beta} = x^{\alpha\beta}$$

$$(xy)^{\alpha} = x^{\alpha}y^{\alpha}$$
; $\left(\frac{x}{y}\right)^{\alpha} = \frac{x^{\alpha}}{y^{\alpha}}$

$$\ln 1 = 0$$

$$\ln(e^{\alpha}) = \alpha \quad (\alpha \in \mathbb{R}) \quad , \qquad e^{\ln \alpha} = \alpha \quad (\alpha \in \mathbb{R}^+)$$

$$\ln(\alpha\beta) = \ln\alpha + \ln\beta$$

$$\ln\left(\frac{\alpha}{\beta}\right) = \ln \alpha - \ln \beta = -\ln\left(\frac{\beta}{\alpha}\right)$$

$$\ln\left(\frac{1}{\alpha}\right) = -\ln\alpha$$

$$\ln\left(\alpha^{k}\right) = k \ln \alpha \quad (k \in \mathbb{R})$$

Derivatives and integrals of elementary functions

$$(c)' = 0 \quad (c = const.) \qquad (\sin x)' = \cos x$$

$$(\sin x)' = \cos x$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1} \quad (\alpha \in R)$$
 $(\cos x)' = -\sin x$

$$(\cos x)' = -\sin x$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(e^x)' = e^x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$
 $(\arctan x)' = \frac{1}{1+x^2}$

$$(\ln x)' = \frac{1}{x} \quad (x > 0)$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$(\ln x)' = \frac{1}{r} \quad (x > 0)$$
 $(\cot x)' = -\frac{1}{\sin^2 x}$ $(\operatorname{arc} \cot x)' = -\frac{1}{1 + r^2}$

$$(\sinh x)' = \cosh x$$

$$(\cosh x)' = \sinh x$$

$$\int dx = x + C$$
; $\int x^a dx = \frac{x^{a+1}}{a+1} + C$ $(a \neq -1)$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int \cos x \, dx = \sin x + C \quad ; \qquad \int \sin x \, dx = -\cos x + C$$

$$\int \frac{dx}{\cos^2 x} = \tan x + C \quad ; \qquad \int \frac{dx}{\sin^2 x} = -\cot x + C$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

$$\int \frac{dx}{1+x^2} = \arctan x + C$$

$$\int \frac{dx}{x^2 - 1} = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln\left(x + \sqrt{x^2 \pm 1}\right) + C$$

COMPLEX NUMBERS

Consider the equation $x^2 + 1 = 0$. This has no solution for real x. For this reason we extend the set of numbers beyond the real numbers by defining the *imaginary unit* number i by

$$i^2 = -1$$
 or, symbolically, $i = \sqrt{-1}$.

Then, the solution of the above-given equation is $x = \pm i$.

Given the *real* numbers x and y, we define the *complex number*

$$z = x + i y$$
.

This is often represented as an ordered pair

$$z = x + i y \equiv (x, y)$$
.

The number x = Re z is the *real part* of z while y = Im z is the *imaginary part* of z. In particular, the value z = 0 corresponds to x = 0 and y = 0. In general, if y = 0, then z is a *real* number.

Given a complex number z = x + iy, the number

$$\overline{z} = x - i y$$

is called the *complex conjugate* of z (the symbol z^* is also used for the complex conjugate). Furthermore, the *real* quantity

$$|z| = (x^2 + y^2)^{1/2}$$

is called the *modulus* (or absolute value) of z. We notice that

$$|z| = |\overline{z}|$$
.

Example: If z = 3+2i, then $\overline{z} = 3-2i$ and $|z| = |\overline{z}| = \sqrt{13}$.

Exercise: Show that, if $z = \overline{z}$, then z is real, and conversely.

Exercise: Show that, if z = x + iy, then

Re
$$z = x = \frac{z + \overline{z}}{2}$$
, Im $z = y = \frac{z - \overline{z}}{2i}$.

8

Consider the complex numbers $z_1 = x_1 + i y_1$, $z_2 = x_2 + i y_2$. As we can show, their sum and their difference are given by

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
,

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$$
.

Exercise: Show that, if $z_1 = z_2$, then $x_1 = x_2$ and $y_1 = y_2$.

Taking into account that $i^2 = -1$, we find the product of z_1 and z_2 to be

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i (x_1 y_2 + x_2 y_1).$$

In particular, for $z_1 = z = x + iy$ and $z_2 = \overline{z} = x - iy$, we have:

$$z\overline{z} = x^2 + y^2 = |z|^2$$
.

To evaluate the ratio z_1/z_2 $(z_2 \neq 0)$ we apply the following trick:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{x_2^2 + y_2^2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}.$$

In particular, for z = x + iy,

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}.$$

Properties:

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \quad , \quad \overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$$

$$\overline{z_1 z_2} = \overline{z_1} \, \overline{z_2} \, , \quad \left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$$

$$|\overline{z}| = |z|$$
, $z\overline{z} = |z|^2$, $|z_1 z_2| = |z_1| |z_2|$

$$|z^{n}| = |z|^{n}$$
, $\left|\frac{z_{1}}{z_{2}}\right| = \frac{|z_{1}|}{|z_{2}|}$

Exercise: Given the complex numbers $z_1 = 3 - 2i$ and $z_2 = -2 + i$, evaluate the quantities $|z_1 \pm z_2|$, $\overline{z_1}z_2$ and $\overline{z_1/z_2}$.

Polar form of a complex number

A complex number $z = x + i y \equiv (x, y)$ corresponds to a point of the x-y plane. It may also be represented by a vector joining the origin O of the axes of the complex plane with this point. The quantities x and y are the Cartesian coordinates of the point, or, the orthogonal components of the corresponding vector. We observe that

$$x = r \cos \theta$$
, $y = r \sin \theta$

where

$$r = |z| = (x^2 + y^2)^{1/2}$$
 and $\tan \theta = \frac{y}{x}$.

Thus, we can write

$$z = x + iy = r(\cos\theta + i\sin\theta)$$

The above expression represents the *polar form* of z. Note that

$$\overline{z} = r(\cos\theta - i\sin\theta)$$
.

Let $z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$ be two complex numbers. As can be shown,

$$\begin{split} z_1 z_2 &= r_1 r_2 \left[\cos \left(\theta_1 + \theta_2 \right) + i \sin \left(\theta_1 + \theta_2 \right) \right] , \\ \frac{z_1}{z_2} &= \frac{r_1}{r_2} \left[\cos \left(\theta_1 - \theta_2 \right) + i \sin \left(\theta_1 - \theta_2 \right) \right] . \end{split}$$

In particular, the inverse of a complex number $z = r(\cos \theta + i \sin \theta)$ is written

$$z^{-1} = \frac{1}{z} = \frac{1}{r} (\cos \theta - i \sin \theta) = \frac{1}{r} [\cos (-\theta) + i \sin (-\theta)].$$

Exercise: By using polar forms, show analytically that $zz^{-1} = 1$.

Exponential form of a complex number

We introduce the notation

$$e^{i\theta} = \cos\theta + i\sin\theta$$

(this notation is not arbitrary but has a deeper meaning that reveals itself within the context of the theory of analytic functions). Note that

$$e^{-i\theta} = e^{i(-\theta)} = \cos(-\theta) + i\sin(-\theta) = \cos\theta - i\sin\theta$$
.

Also,

$$|e^{i\theta}| = |e^{-i\theta}| = \cos^2 \theta + \sin^2 \theta = 1$$
.

Exercise: Show that

$$e^{-i\theta} = 1/e^{i\theta} = \overline{e^{i\theta}}$$
.

Also show that

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
, $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

The complex number $z = r(\cos \theta + i \sin \theta)$, where r = |z|, may now be expressed as follows:

$$z = r e^{i\theta}$$

It can be shown that

$$z^{-1} = \frac{1}{z} = \frac{1}{r} e^{-i\theta} = \frac{1}{r} e^{i(-\theta)}, \quad \overline{z} = r e^{-i\theta}$$
$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}, \quad \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

where $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$.

Example: The complex number $z = \sqrt{2} - i\sqrt{2}$, with |z| = r = 2, is written

$$z = 2\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = 2\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right] = 2e^{i(-\pi/4)} = 2e^{-i\pi/4}.$$

Powers and roots of complex numbers

Let $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$ be a complex number, where r = |z|. It can be proven that

$$z^n = r^n e^{in\theta} = r^n (\cos n\theta + i\sin n\theta)$$
 $(n = 0, \pm 1, \pm 2, \cdots)$.

In particular, for $z = \cos \theta + i \sin \theta = e^{i\theta}$ (r=1) we find the de Moivre formula

$$(\cos\theta + i\sin\theta)^n = (\cos n\theta + i\sin n\theta).$$

Note also that, for $z \neq 0$, we have that $z^0 = 1$ and $z^{-n} = 1/z^n$.

Given a complex number $z = r(\cos \theta + i \sin \theta)$, where r = |z|, an *nth root of z* is any complex number c satisfying the equation $c^n = z$. We write $c = \sqrt[n]{z}$. An *n*th root of a complex number admits n different values given by the formula

$$c_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right), \quad k = 0, 1, 2, \dots, (n-1) .$$

Example: Let z = 1. We seek the 4th roots of unity, i.e., the complex numbers c satisfying the equation $c^4 = 1$. We write

$$z = 1 (\cos 0 + i \sin 0)$$
 (that is, $r = 1$, $\theta = 0$).

Then,

$$c_k = \cos \frac{2k\pi}{4} + i \sin \frac{2k\pi}{4} = \cos \frac{k\pi}{2} + i \sin \frac{k\pi}{2}$$
, $k = 0,1,2,3$.

We find:

$$c_0 = 1$$
, $c_1 = i$, $c_2 = -1$, $c_3 = -i$.

Example: Let z = i. We seek the square roots of i, that is, the complex numbers c satisfying the equation $c^2 = i$. We have:

$$z = 1 \left[\cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right]$$
 (that is, $r = 1$, $\theta = \pi/2$);

$$c_k = \cos \frac{(\pi/2) + 2k\pi}{2} + i \sin \frac{(\pi/2) + 2k\pi}{2} , \quad k = 0,1 ;$$

$$c_0 = \cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} (1+i) ,$$

$$c_1 = \cos \left(\frac{5\pi}{4} \right) + i \sin \left(\frac{5\pi}{4} \right) = -\frac{\sqrt{2}}{2} (1+i) .$$

ALGEBRA: SOME BASIC CONCEPTS

Sets

Subset: $X \subseteq Y \Leftrightarrow (x \in X \Rightarrow x \in Y)$;

 $X = Y \Leftrightarrow X \subseteq Y \text{ and } Y \subseteq X$

Proper subset: $X \subset Y \Leftrightarrow X \subseteq Y \text{ and } X \neq Y$

Union of sets: $X \cup Y = \{ x / x \in X \text{ or } x \in Y \}$

Intersection of sets: $X \cap Y = \{x \mid x \in X \text{ and } x \in Y\}$

Disjoint sets: $X \cap Y = \emptyset$

Difference of sets: $X - Y = \{ x / x \in X \text{ and } x \notin Y \}$

Complement of a subset: $X \supset Y$; $X \setminus Y = X - Y$

Cartesian product: $X \times Y = \{(x, y) \mid x \in X \text{ and } y \in Y \}$

Mapping: $f: X \to Y$; $(x \in X) \to y = f(x) \in Y$

Domain/range of f: D(f) = X, $R(f) = f(X) = \{f(x) | x \in X\} \subseteq Y$;

f is defined in X and has values in Y;

y = f(x) is the *image* of x under f

Composite mapping: $f: X \to Y$, $g: Y \to Z$;

 $f \circ g: X \to Z$; $(x \in X) \to g(f(x)) \in Z$

Injective (1-1) mapping: $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$, or

 $x_1 \neq x_2 \iff f(x_1) \neq f(x_2)$

Surjective (onto) mapping: f(X) = Y

Bijective mapping: f is both injective and surjective \Rightarrow invertible

Identity mapping: $f_{id}: X \to X$; $f_{id}(x) = x$, $\forall x \in X$

Internal operation on X: $X \times X \to X$; $[(x,y) \in X \times X] \to z \in X$

External operation on X: $A \times X \to X$; $[(a,x) \in A \times X] \to y = a \cdot x \in X$

Groups

A *group* is a set G, together with an internal operation $G \times G \to G$; $(x, y) \to z = x \cdot y$, such that:

- 1. The operation is associative: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 2. $\exists e \in G \text{ (identity)}: x \cdot e = e \cdot x = x, \forall x \in G$
- 3. $\forall x \in G, \exists x^{-1} \in G \text{ (inverse): } x^{-1} \cdot x = x \cdot x^{-1} = e$

A group *G* is abelian or commutative if $x \cdot y = y \cdot x$, $\forall x, y \in G$.

A subset $S \subseteq G$ is a *subgroup* of G if S is itself a group (clearly, then, S contains the identity e of G, as well as the inverse of every element of S).

Vector space over R

Let $V = \{x, y, z, ...\}$, and let $a, b, c, ... \in R$. Consider an internal operation + and an external operation \cdot on V:

+:
$$V \times V \rightarrow V$$
; $x+y=z$
·: $R \times V \rightarrow V$: $a \cdot x = v$

Then, V is a vector space over R iff

- 1. V is a commutative group with respect to +. The identity element is denoted $\mathbf{0}$, while the inverse of \mathbf{x} is denoted $-\mathbf{x}$.
- 2. The operation \cdot satisfies the following:

$$a \cdot (b \cdot \mathbf{x}) = (ab) \cdot \mathbf{x}$$

$$(a+b) \cdot \mathbf{x} = a \cdot \mathbf{x} + b \cdot \mathbf{x}$$

$$a \cdot (\mathbf{x}+\mathbf{y}) = a \cdot \mathbf{x} + a \cdot \mathbf{y}$$

$$1 \cdot \mathbf{x} = \mathbf{x}, \quad 0 \cdot \mathbf{x} = \mathbf{0}$$

A set $\{x_1, x_2, ..., x_k\}$ of elements of V is *linearly independent* iff the equation¹

$$c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_k \mathbf{x}_k = 0$$

can only be satisfied for $c_1 = c_2 = ... = c_k = 0$; otherwise, the set is *linearly dependent*. The *dimension* dimV of V is the largest number of vectors in V that constitute a linearly independent set. If dimV=n, then any system $\{e_1, e_2, ..., e_n\}$ of n linearly independent elements is a *basis* for V, and any $x \in V$ can be uniquely expressed as $x = c_1 e_1 + c_2 e_2 + ... + c_n e_n$.

A subset $S \subseteq V$ is a *subspace* of V if S is itself a vector space under the operations (+) and (·). In particular, the sum x+y of any two elements of S, as well as the scalar multiple ax and the inverse -x of any element x of S, must belong to S. Clearly, this set must contain the identity $\mathbf{0}$ of V. If S is a subspace of V, then dim $S \leq \dim V$. In particular, S coincides with V iff dim $S = \dim V$.

¹ The symbol (·) will often be omitted in the sequel.

Functionals

A functional ω on a vector space V is a mapping ω : $V \to R$; $(x \in V) \to t = \omega(x) \in R$. The functional ω is linear if $\omega(a \cdot x + b \cdot y) = a \cdot \omega(x) + b \cdot \omega(y)$. The collection of all linear functionals on V is called the *dual space* of V, denoted V^* . It is itself a vector space over R, and $\dim V^* = \dim V$.

Algebras

A real algebra A is a vector space over R equipped with a binary operation $(\cdot | \cdot) : A \times A \rightarrow A$; (x | y) = z, such that, for $a, b \in R$,

$$(a \cdot x + b \cdot y \mid z) = a \cdot (x \mid z) + b \cdot (y \mid z)$$

$$(x \mid a \cdot y + b \cdot z) = a \cdot (x \mid y) + b \cdot (x \mid z)$$

Example: The set $\Lambda^0(R^n)$ of all functions on R^n is a commutative, associative algebra. The multiplication operation $(\cdot | \cdot) : \Lambda^0(R^n) \times \Lambda^0(R^n) \to \Lambda^0(R^n)$ is defined by

$$(f|g)(x^1, \dots, x^n) = f(x^1, \dots, x^n) g(x^1, \dots, x^n).$$

Example: The set of all $n \times n$ matrices is an associative, non-commutative algebra. The binary operation $(\cdot | \cdot)$ is matrix multiplication.

A subspace S of A is a *subalgebra* of A if S is itself an algebra under the same binary operation $(\cdot | \cdot)$. In particular, S must be closed under this operation; i.e., $(x | y) \in S$ for any x, y in S. We write: $S \subset A$.

A subalgebra $S \subset A$ is an *ideal* of A iff $(x \mid y) \in S$ and $(y \mid x) \in S$, for any $x \in S$, $y \in A$.

Modules

Note first that R is an associative, commutative algebra under the usual operations of addition and multiplication. Thus, a vector space over R is a vector space over an associative, commutative algebra. More generally, a *module M over A* is a vector space over an *associative* but (generally) *non-commutative* algebra. In particular, the external operation (\cdot) on M is defined by

$$\cdot : A \times M \to M ; \quad a \cdot x = y \quad (a \in A ; x, y \in M).$$

Example: The collection of all n-dimensional column matrices, with A taken to be the algebra of $n \times n$ matrices, and with matrix multiplication as the external operation.

Vector fields

A vector field V on \mathbb{R}^n is a map from a domain of \mathbb{R}^n into \mathbb{R}^n :

$$V: R^n \supset U \to R^n$$
; $[x = (x^1, ..., x^n) \in U] \to V(x) = (V^1(x^k), ..., V^n(x^k)) \in R^n$.

The vector \mathbf{x} represents a point in U, with coordinates $(x^1,...,x^n)$. The functions $V^i(x^k)$ (i=1,...,n) are the *components* of V in the coordinate system (x^k) .

Given two vector fields U and V, we can construct a new vector field W=U+V such that W(x)=U(x)+V(x). The components of W are the sums of the respective components of U and V.

Given a vector field V and a constant $a \in R$, we can construct a new vector field Z = aV such that Z(x) = aV(x). The components of Z are scalar multiples (by a) of those of V.

It follows from the above that the collection of all vector fields on \mathbb{R}^n is a vector space over \mathbb{R} .

More generally, given a vector field V and a function $f \in \Lambda^0(\mathbb{R}^n)$, we can construct a new vector field $\mathbf{Z} = f V$ such that $\mathbf{Z}(\mathbf{x}) = f(\mathbf{x})V(\mathbf{x})$. Given that $\Lambda^0(\mathbb{R}^n)$ is an associative algebra, we conclude that the collection of all vector fields on \mathbb{R}^n is a module over $\Lambda^0(\mathbb{R}^n)$ (in this particular case, the algebra $\Lambda^0(\mathbb{R}^n)$ is commutative).

A note on linear independence:

Let $\{V_1, ..., V_r\} \equiv \{V_a\}$ be a collection of vector fields on \mathbb{R}^n .

(a) The set $\{V_a\}$ is *linearly dependent over R* (linearly dependent with constant coefficients) iff there exist real constants $c_1, ..., c_r$, not all zero, such that

$$c_1V_1(x) + \ldots + c_rV_r(x) = 0$$
. $\forall x \in \mathbb{R}^n$.

If the above relation is satisfied only for $c_1 = ... = c_r = 0$, the set $\{V_a\}$ is *linearly independent over R*.

(b) The set $\{V_a\}$ is linearly dependent over $\Lambda^0(R^n)$ iff there exist functions $f_1(x^k)$, ..., $f_r(x^k)$, not all identically zero over R^n , such that

$$f_1(x^k) V_1(x) + \dots + f_r(x^k) V_r(x) = 0, \quad \forall x \equiv (x^k) \in \mathbb{R}^n.$$

If this relation is satisfied only for $f_1(x^k) = ... = f_r(x^k) \equiv 0$, the set $\{V_a\}$ is linearly independent over $\Lambda^0(\mathbb{R}^n)$.

There can be at most n elements in a linearly independent system over $\Lambda^0(R^n)$. These elements form a basis $\{e_1, ..., e_n\} \equiv \{e_k\}$ for the module of all vector fields on R^n . An element of this module, i.e. an arbitrary vector field V, is written as a linear combination of the $\{e_k\}$ with coefficients $V^k \in \Lambda^0(R^n)$. Thus, at any point $x \equiv (x^k) \in R^n$,

16

$$V(x) = V^{1}(x^{k}) e_{1} + ... + V^{n}(x^{k}) e_{n} \equiv (V^{1}(x^{k}), ..., V^{n}(x^{k}))$$

In particular, in the basis $\{e_k\}$,

$$e_1 \equiv (1,0,0,...,0), \quad e_2 \equiv (0,1,0,...,0), \quad ... \quad e_n \equiv (0,0,...,0,1)$$
.

Example: Let n=3, i.e., $R^n=R^3$. Call $\{e_1, e_2, e_3\} \equiv \{i, j, k\}$. Let V be a vector field on R^3 . Then, at any point $x \equiv (x, y, z) \in R^3$,

$$V(x) = V_x(x, y, z) i + V_y(x, y, z) j + V_z(x, y, z) k \equiv (V_x, V_y, V_z)$$
.

Now, consider the six vector fields

$$V_1 = i$$
, $V_2 = j$, $V_3 = k$, $V_4 = xj - yi$, $V_5 = yk - zj$, $V_6 = zi - xk$.

Clearly, the $\{V_1, V_2, V_3\}$ are linearly independent over $\Lambda^0(R^3)$, since they constitute the basis $\{i,j,k\}$. On the other hand, the V_4 , V_5 , V_6 are separately linearly dependent on the $\{V_1, V_2, V_3\}$ over $\Lambda^0(R^3)$. Moreover, the set $\{V_4, V_5, V_6\}$ is also linearly dependent over $\Lambda^0(R^3)$, since $zV_4 + xV_5 + yV_6 = 0$. Thus, the set $\{V_1, ..., V_6\}$ is linearly dependent over $\Lambda^0(R^3)$. On the other hand, the system $\{V_1, ..., V_6\}$ is linearly independent over R, since the equation $c_1V_1 + ... + c_6V_6 = 0$, with $c_1, ..., c_6 \in R$ (constant coefficients), can only be satisfied for $c_1 = ... = c_6 = 0$. In general,

there is an infinite number of linearly independent vector fields on \mathbb{R}^n over \mathbb{R} , but only n linearly independent fields over $\Lambda^0(\mathbb{R}^n)$.

Derivation on an algebra

Let *L* be an operation on an algebra *A* (an *operator* on *A*):

$$L: A \rightarrow A; (x \in A) \rightarrow y = Lx \in A.$$

L is a *derivation* on *A* iff, $\forall x, y \in A$ and $a, b \in R$,

$$L(ax+by) = aL(x) + bL(y)$$
 (linearity)

$$L(x | y) = (Lx | y) + (x | Ly)$$
 (Leibniz rule)

Example: Let $A = \Lambda^0(R^n) = \{ f(x^1, ..., x^n) \}$, and let L be the linear operator

$$L = \varphi^1(x^k) \, \partial/\partial x^1 + \dots + \varphi^n(x^k) \, \partial/\partial x^n \equiv \varphi^i(x^k) \, \partial/\partial x^i \, ,$$

where the $\varphi^{i}(x^{k})$ are given functions. As can be shown,

$$L[f(x^k)g(x^k)] = [Lf(x^k)]g(x^k) + f(x^k)Lg(x^k).$$

Hence, *L* is a derivation on $\Lambda^0(\mathbb{R}^n)$.

Lie algebra

An algebra \mathcal{L} over R is a (real) $Lie\ algebra$ with binary operation $[\cdot,\cdot]$: $\mathcal{L}\times\mathcal{L}\to\mathcal{L}$ ($Lie\ bracket$) iff this operation satisfies the properties:

$$[ax + by, z] = a[x, z] + b[y, z]$$

$$[x, y] = -[y, x]$$

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
(antisymmetry)
(Jacobi identity)

(where $x, y, z \in \mathcal{L}$ and $a, b \in R$). Note that, by the antisymmetry of the Lie bracket, the first and third properties are written, alternatively,

$$[x, ay + bz] = a[x, y] + b[x, z],$$

 $[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.$

A Lie algebra is a *non-associative* algebra, since, as follows by the above properties,

$$[x, [y, z]] \neq [[x, y], z].$$

Example: The algebra of $n \times n$ matrices, with [A, B] = AB - BA (commutator).

Example: The algebra of all vectors in \mathbb{R}^3 , with $[a, b] = a \times b$ (vector product).

Lie algebra of derivations

Consider the algebra $A = \Lambda^0(R^n) = \{ f(x^1, ..., x^n) \}$. Consider also the set D(A) of linear operators on A, of the form

$$L = \varphi^{i}(x^{k}) \partial/\partial x^{i}$$
 (sum on $i = 1, 2, ..., n$).

These first-order differential operators are *derivations* on A (the Leibniz rule is satisfied). Now, given two such operators L_1 , L_2 , we construct the linear operator (*Lie bracket* of L_1 and L_2), as follows:

$$[L_1, L_2] = L_1 L_2 - L_2 L_1 ;$$

$$[L_1, L_2] f(x^k) = L_1 (L_2 f(x^k)) - L_2 (L_1 f(x^k)) .$$

It can be shown that $[L_1, L_2]$ is a *first*-order differential operator (a derivation), hence is a member of D(A). (This is *not* the case with second-order operators like L_1L_2 !) Moreover, the Lie bracket of operators satisfies all the properties of the Lie bracket of a general Lie algebra (such as antisymmetry and Jacobi identity). It follows that

the set D(A) of derivations on $\Lambda^0(R^n)$ is a Lie algebra, with binary operation defined as the Lie bracket of operators.

Direct sum of subspaces

Let V be a vector space over a field K (where K may be R or C), of dimension $\dim V=n$. Let S_1 , S_2 be *disjoint* (i.e., $S_1\cap S_2=\{\mathbf{0}\}$) subspaces of V. We say that V is the *direct sum* of S_1 and S_2 if each vector of V can be *uniquely* represented as the sum of a vector of S_1 and a vector of S_2 . We write: $V=S_1\oplus S_2$. In terms of dimensions, $\dim V=\dim S_1+\dim S_2$. We similarly define the vector sum of three subspaces of V, each of which is disjoint from the direct sum of the other two (i.e., $S_1\cap (S_2\oplus S_3)=\{\mathbf{0}\}$, etc.).

Homomorphism of vector spaces

Let V, W be vector spaces over a field K. A mapping $\Phi:V \to W$ is said to be a *linear mapping* or *homomorphism* if it preserves linear operations, i.e.,

$$\Phi(x+y) = \Phi(x) + \Phi(y)$$
, $\Phi(kx) = k \Phi(x)$, $\forall x, y \in V$ and $k \in K$.

A homomorphism which is also *bijective* (1-1) is called an *isomorphism*.

The set of vectors $x \in V$ mapping under Φ into the zero of W is called the *kernel* of the homomorphism Φ :

Ker Φ = {
$$x \in V : Φ(x) = 0$$
 }.

Note that $\Phi(\mathbf{0})=\mathbf{0}$, for *any* homomorphism (clearly, the two zeros refer to *different* vector spaces). Thus, in general, $\mathbf{0} \in \text{Ker } \Phi$.

If Ker $\Phi = \{0\}$, then the homomorphism Φ is also an isomorphism of V onto a subspace of W. If, moreover, $\dim V = \dim W$, then the map $\Phi: V \to W$ is itself an *isomorphism*. In this case, Im $\Phi = W$, where, in general, Im Φ (*image of the homomorphism*) is the collection of images of all vectors of V under the map Φ .

The algebra of linear operators

Let V be a vector space over a field K. A linear operator A on V is a homomorphism $A: V \rightarrow V$. Thus,

$$A(x+y) = A(x) + A(y)$$
, $A(kx) = kA(x)$, $\forall x, y \in V$ and $k \in K$.

The sum A+B and the scalar multiplication kA ($k \in K$) are linear operators defined by

$$(A+B)x = Ax + Bx$$
, $(kA)x = k(Ax)$.

Under these operations, the set Op(V) of all linear operators on V is a vector space. The zero element of that space is a zero operator θ such that $\theta x = 0$, $\forall x \in V$.

Since A and B are mappings, their composition may be defined. This is regarded as their *product* AB:

$$(AB)x \equiv A(Bx)$$
, $\forall x \in V$.

Note that AB is a linear operator on V, hence belongs to Op(V). In general, operator products are non-commutative: $AB \neq BA$. However, they are associative and distributive over addition:

$$(AB)C = A(BC) \equiv ABC$$
, $A(B+C) = AB+AC$.

The *identity operator* E is the mapping of Op(V) which leaves every element of V fixed: E x = x. Thus, AE = EA = A. Operators of the form kE ($k \in K$), called *scalar operators*, are commutative with all operators. In fact, any operator commutative with every operator of Op(V) is a scalar operator.

It follows from the above that the set Op(V) of all linear operators on a given vector space V is an algebra. This algebra is associative but (generally) non-commutative.

An operator A is said to be *invertible* if it represents a *bijective* (1-1) mapping, i.e., if it is an isomorphism of V onto itself. In this case, an *inverse operator* A^{-1} exists such that $AA^{-1} = A^{-1}A = E$. Practically this means that, if A maps $x \in V$ onto $y \in V$, then A^{-1} maps y back onto x. For an invertible operator A, $Ker A = \{0\}$ and Im A = V.

Matrix representation of a linear operator

Let A be a linear operator on V. Let $\{e_i\}$ (i=1,...,n) be a basis of V. Let

$$A e_k = e_i A_{ik}$$
 (sum on i)

where the A_{ik} are real or complex, depending on whether V is a vector space over R or C. The $n \times n$ matrix $A = [A_{ik}]$ is called the *matrix of the operator* A *in the basis* $\{e_i\}$.

Now, let $x = x_i e_i$ (sum on i) be a vector in V, and let y = A x. If $y = y_i e_i$, then, by the linearity of A,

$$y_i = A_{ik} x_k$$
 (sun on k).

In matrix form,

$$[y]_{n\times 1} = [A]_{n\times n} [x]_{n\times 1}$$
.

Next, let A, B be linear operators on V. Define their product C=AB by

$$Cx = (AB) x \equiv A (Bx)$$
, $x \in V$.

Then, for any basis $\{e_i\}$, $Ce_k = A(Be_k) = e_i A_{ij} B_{jk} \equiv e_i C_{jk} \implies$

$$C_{ik} = A_{ij}B_{jk}$$

or, in matrix form,

$$C = AB$$
.

That is,

the matrix of the product of two operators is the product of the matrices of these operators, in any basis of V.

Consider now a change of basis defined by the *transition matrix* $T = [T_{ik}]$:

$$e_k' = e_i T_{ik}$$
.

The inverse transformation is

$$\boldsymbol{e}_{k} = \boldsymbol{e}_{i}'(T^{-1})_{ik}.$$

Under this basis change, the matrix A of an operator A transforms as

$$A' = T^{-1}AT$$
 (similarity transformation).

Under basis transformations, the trace and the determinant of A remain unchanged:

$$trA' = trA$$
 , $detA' = detA$.

An operator A is said to be *nonsingular* (*singular*) if $det A \neq 0$ (det A = 0). Note that this is a *basis-independent* property. Any *nonsingular operator is invertible*, i.e., there exists an inverse operator $A^{-1} \in Op(V)$ such that $A A^{-1} = A^{-1}A = E$. Since an invertible operator represents a bijective mapping (i.e., both 1-1 and onto), it follows that $Ker A = \{0\}$ and Im A = V. If A is invertible (nonsingular), then, for any basis $\{e_i\}$ (i=1,...,n) of V, the vectors $\{Ae_i\}$ are linearly independent and hence also constitute a basis.

Invariant subspaces and eigenvectors

Let V be an n-dimensional vector space over a field K, and let A be a linear operator on V. The subspace S of V is said to be *invariant under* A if, for every vector x of S, the vector Ax again belongs to S. Symbolically, $AS \subseteq S$.

A vector $x\neq 0$ is said to be an *eigenvector* of A if it generates a one-dimensional invariant subspace of V under A. This means that an element $\lambda \in K$ exists, such that

$$Ax = \lambda x$$
.

The element λ is called an *eigenvalue* of A, to which eigenvalue the eigenvector x belongs. Note that, trivially, the null vector $\mathbf{0}$ is an eigenvector of A, belonging to any

eigenvalue λ . The set of all eigenvectors of A, belonging to a given λ , is a subspace of V called the *proper subspace belonging to* λ .

It can be shown that the eigenvalues of A are basis-independent quantities. Indeed, let $A=[A_{ik}]$ be the $(n\times n)$ matrix representation of A in some basis $\{e_i\}$ of V, and let $x=x_ie_i$ be an eigenvector belonging to λ . We denote by $X=[x_i]$ the column vector representing x in that basis. The eigenvalue equation for A is written, in matrix form,

$$A_{ik} x_k = \lambda x_i$$
 or $AX = \lambda X$.

This is written

$$(A-\lambda 1_n) X = 0$$
.

This equation constitutes a linear homogeneous system for $X=[x_i]$, which has a nontrivial solution iff

$$det(A-\lambda 1_n)=0$$
.

This polynomial equation determines the eigenvalues λ_i (i=1,...,n) (not necessarily all different from each-other) of A. Since the determinant of the matrix representation of an operator [in particular, of the operator ($A-\lambda E$) for any given λ] is a basis-independent quantity, it follows that, if the above equation is satisfied for a certain λ in a certain basis (where A is represented by the matrix A), it will also be satisfied for the same λ in any other basis (where A is represented by another matrix, say, A'). We conclude that the eigenvalues of an operator are a property of the operator itself and do not depend on the choice of basis of V.

If we can find n linearly independent eigenvectors $\{x_i\}$ of A, belonging to the corresponding eigenvalues λ_i , we can use these vectors to define a basis for V. In this basis, the matrix representation of A has a particularly simple *diagonal* form:

$$A = diag(\lambda_1, \dots, \lambda_n)$$
.

Using this expression, and the fact that the quantities trA, detA and λ_i are invariant under basis transformations, we conclude that, in any basis of V,

$$trA = \lambda_1 + \lambda_2 + ... + \lambda_n$$
, $detA = \lambda_1 \lambda_2 ... \lambda_n$.

We note, in particular, that all eigenvalues of an invertible (nonsingular) operator are nonzero. Indeed, if even one is zero, then det A = 0 and A is singular.

An operator A is called *nilpotent* if $A^m = 0$ for some natural number m > 1. The smallest such value of m is called the *degree of nilpotency*, and it cannot exceed n. All eigenvalues of a nilpotent operator are zero. Thus, such an operator is singular (non-invertible).

An operator A is called *idempotent* (or *projection operator*) if $A^2=A$. It follows that $A^m=A$, for any natural number m. The eigenvalues of an idempotent operator can take the values 0 or 1.

BASIC MATRIX PROPERTIES

$$(A+B)^{T} = A^{T} + B^{T}$$
; $(AB)^{T} = B^{T} A^{T}$
 $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$; $(AB)^{\dagger} = B^{\dagger} A^{\dagger}$ where $M^{\dagger} \equiv (M^{T})^{*} = (M^{*})^{T}$
 $(kA)^{T} = kA^{T}$; $(kA)^{\dagger} = k^{*} A^{\dagger}$ $(k \in C)$
 $(AB)^{-1} = B^{-1} A^{-1}$; $(A^{T})^{-1} = (A^{-1})^{T}$; $(A^{\dagger})^{-1} = (A^{-1})^{\dagger}$
 $[A, B]^{T} = [B^{T}, A^{T}]$; $[A, B]^{\dagger} = [B^{\dagger}, A^{\dagger}]$

$$A^{-1} = \frac{1}{\det A} \ adjA \ (\det A \neq 0)$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$tr(\kappa A + \lambda B) = \kappa trA + \lambda trB$$

$$trA^{T} = trA$$
; $trA^{\dagger} = (trA)^{*}$

$$tr(AB) = tr(BA)$$
, $tr(ABC) = tr(BCA) = tr(CAB)$, etc.

$$tr[A, B] = 0$$

$$\det A^T = \det A \; ; \quad \det A^{\dagger} = (\det A)^*$$

$$det(AB) = det(BA) = det A \cdot det B$$

$$\det(A^{-1}) = 1/\det A$$

$$det(cA) = c^n det A \quad (c \in C, A \in gl(n, C))$$

If any row or column of A is multiplied by c, then so is det A.

$$[A, B] = -[B, A] \equiv AB - BA$$

$$[A, B+C] = [A,B]+[A,C]$$
; $[A+B, C] = [A,C]+[B,C]$

$$[A, BC] = [A, B]C + B[A, C]$$
; $[AB, C] = A[B, C] + [A, C]B$

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0$$

$$[[A, B], C] + [[B, C], A] + [[C, A], B] = 0$$

Let $A = A(t) = [a_{ij}(t)]$, $B = B(t) = [b_{ij}(t)]$, be $(n \times n)$ matrices. The derivative of A (similarly, of B) is the $(n \times n)$ matrix dA/dt, with elements

$$\left(\frac{dA}{dt}\right)_{ij} = \frac{d}{dt} a_{ij}(t) .$$

The integral of A (similarly, of B) is the $(n \times n)$ matrix defined by

$$\left(\int A(t) dt\right)_{ij} = \int a_{ij}(t) dt .$$

$$\frac{d}{dt}(A \pm B) = \frac{dA}{dt} \pm \frac{dB}{dt}; \quad \frac{d}{dt}(AB) = \frac{dA}{dt}B + A\frac{dB}{dt}$$

$$\frac{d}{dt}[A, B] = \left[\frac{dA}{dt}, B\right] + \left[A, \frac{dB}{dt}\right]$$

$$\frac{d}{dt}(A^{-1}) = -A^{-1}\frac{dA}{dt}A^{-1} \implies d(A^{-1}) = -A^{-1}(dA)A^{-1}$$

$$tr\left(\frac{dA}{dt}\right) = \frac{d}{dt}(trA)$$

Let
$$A = A(x, y)$$
. Call $\partial A/\partial x \equiv \partial_x A \equiv A_x$, etc.:

$$\partial_x (A^{-1}A_y) - \partial_y (A^{-1}A_x) + [A^{-1}A_x, A^{-1}A_y] = 0$$

$$\partial_x (A_y A^{-1}) - \partial_y (A_x A^{-1}) - [A_x A^{-1}, A_y A^{-1}] = 0$$

$$A(A^{-1}A_x)_y A^{-1} = (A_y A^{-1})_x \iff A^{-1}(A_y A^{-1})_x A = (A^{-1}A_x)_y$$

$$e^{A} \equiv \exp A = \sum_{n=0}^{\infty} \frac{A^{n}}{n!} = 1 + A + \frac{A^{2}}{2} + \cdots$$

$$Be^AB^{-1}=e^{BAB^{-1}}$$

$$(e^A)^* = e^{A^*}; (e^A)^T = e^{A^T}; (e^A)^{\dagger} = e^{A^{\dagger}}; (e^A)^{-1} = e^{-A}$$

$$e^{A}e^{B} = e^{B}e^{A} = e^{A+B}$$
 when $[A, B] = 0$

In general, $e^A e^B = e^C$ where

$$C = A + B + \frac{1}{2}[A, B] + \frac{1}{12}([A, [A, B]] + [B, [B, A]]) + \cdots$$

By definition, $\log B = A \Leftrightarrow B = e^A$.

$$\det(e^A) = e^{trA} \iff \det B = e^{tr(\log B)} \iff tr(\log B) = \log(\det B)$$

 $\det(1+\delta A) \simeq 1 + tr \delta A$, for infinitesimal δA

$$tr(A^{-1}A_x) = tr(A_xA^{-1}) = tr(\log A)_x = [tr(\log A)]_x = [\log(\det A)]_x$$