MATHEMATICAL FORMULAS AND PROPERTIES

Trigonometric formulas

\[
\begin{align*}
\sin^2 A + \cos^2 A &= 1; \quad \tan x &= \frac{\sin x}{\cos x}; \quad \cot x &= \frac{\cos x}{\sin x} = \frac{1}{\tan x} \\
\cos^2 x &= \frac{1}{1 + \tan^2 x}; \quad \sin^2 x &= \frac{1}{1 + \cot^2 x} = \frac{\tan^2 x}{1 + \tan^2 x}
\end{align*}
\]

\[
\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B
\]
\[
\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B
\]
\[
\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}, \quad \cot (A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}
\]

\[
\begin{align*}
\sin 2A &= 2 \sin A \cos A \\
\cos 2A &= \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A \\
\tan 2A &= \frac{2 \tan A}{1 - \tan^2 A}, \quad \cot 2A = \frac{\cot^2 A - 1}{2 \cot A}
\end{align*}
\]

\[
\begin{align*}
\sin A + \sin B &= 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2} \\
\sin A - \sin B &= 2 \sin \frac{A - B}{2} \cos \frac{A + B}{2} \\
\cos A + \cos B &= 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2} \\
\cos A - \cos B &= 2 \sin \frac{A + B}{2} \sin \frac{B - A}{2}
\end{align*}
\]

\[
\begin{align*}
\sin A \sin B &= \frac{1}{2} [\cos (A - B) - \cos (A + B)] \\
\cos A \cos B &= \frac{1}{2} [\cos (A + B) + \cos (A - B)] \\
\sin A \cos B &= \frac{1}{2} [\sin (A + B) + \sin (A - B)]
\end{align*}
\]

\[
\begin{align*}
\sin (-A) &= -\sin A, \quad \cos (-A) = \cos A \\
\tan (-A) &= -\tan A, \quad \cot (-A) = -\cot A \\
\sin \left(\frac{\pi}{2} \pm A\right) &= \cos A, \quad \cos \left(\frac{\pi}{2} \pm A\right) = \mp \sin A \\
\sin (\pi \pm A) &= \mp \sin A, \quad \cos (\pi \pm A) = -\cos A
\end{align*}
\]
Basic trigonometric equations

\[
\begin{align*}
\sin x &= \sin \alpha \quad \Rightarrow \quad \begin{cases}
x = \alpha + 2k\pi \\
x = (2k+1)\pi - \alpha
\end{cases} \quad (k = 0, \pm 1, \pm 2, \cdots) \\
\cos x &= \cos \alpha \quad \Rightarrow \quad \begin{cases}
x = \alpha + 2k\pi \\
x = 2k\pi - \alpha
\end{cases} \quad (k = 0, \pm 1, \pm 2, \cdots) \\
\tan x &= \tan \alpha \quad \Rightarrow \quad x = \alpha + k\pi \quad (k = 0, \pm 1, \pm 2, \cdots) \\
\cot x &= \cot \alpha \quad \Rightarrow \quad x = \alpha + k\pi \quad (k = 0, \pm 1, \pm 2, \cdots) \\
\sin x &= -\sin \alpha \quad \Rightarrow \quad \begin{cases}
x = 2k\pi - \alpha \\
x = \alpha + (2k+1)\pi
\end{cases} \quad (k = 0, \pm 1, \pm 2, \cdots) \\
\cos x &= -\cos \alpha \quad \Rightarrow \quad \begin{cases}
x = (2k+1)\pi - \alpha \\
x = \alpha + (2k+1)\pi
\end{cases} \quad (k = 0, \pm 1, \pm 2, \cdots)
\end{align*}
\]

Hyperbolic functions

\[
\begin{align*}
\cosh x &= \frac{e^x + e^{-x}}{2} ; \quad \sinh x = \frac{e^x - e^{-x}}{2} ; \quad \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1}{\coth x} \\
\cosh^2 x - \sinh^2 x &= 1 \\
cosh(-x) &= \cosh x , \quad \sinh(-x) = -\sinh x
\end{align*}
\]
Power formulas

\[(a \pm b)^2 = a^2 \pm 2ab + b^2\]

\[(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3\]

\[a^2 - b^2 = (a + b)(a - b)\]

\[a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\]

\[(a + b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^3 + \cdots + b^n \quad (n = 1, 2, 3, \ldots)\]

Quadratic equation: \(ax^2 + bx + c = 0\)

Call \(D = b^2 - 4ac\) \quad (discriminant)

Roots: \(x = \frac{-b \pm \sqrt{D}}{2a}\)

Roots are real and distinct if \(D > 0\); real and equal if \(D = 0\); complex conjugate if \(D < 0\).

Geometric formulas

\(A = \) area or surface area ; \(V = \) volume ; \(P = \) perimeter

Parallelogram of base \(b\) and altitude \(h\) : \(A = bh\)

Triangle of base \(b\) and altitude \(h\) : \(A = \frac{1}{2}bh\)

Trapezoid of altitude \(h\) and parallel sides \(a\) and \(b\) : \(A = \frac{1}{2}(a+b)h\)

Circle of radius \(r\) : \(P = 2\pi r\) , \(A = \pi r^2\)

Ellipse of semi-major axis \(a\) and semi-minor axis \(b\) : \(A = \pi ab\)

Parallelepiped of base area \(A\) and height \(h\) : \(V = Ah\)

Cylindroid of base area \(A\) and height \(h\) : \(V = Ah\)

Sphere of radius \(r\) : \(A = 4\pi r^2\) , \(V = \frac{4}{3}\pi r^3\)

Circular cone of radius \(r\) and height \(h\) : \(V = \frac{1}{3}\pi r^2h\)
Properties of inequalities

\[a < b \text{ and } b < c \Rightarrow a < c \]

\[a \geq b \text{ and } b \geq a \Rightarrow a = b \]

\[a < b \Rightarrow -a > -b \]

\[0 < a < b \Rightarrow \frac{1}{a} > \frac{1}{b} \]

\[a < b \text{ and } c \leq d \Rightarrow a + c < b + d \]

\[0 < a < b \text{ and } 0 < c \leq d \Rightarrow a c < b d \]

\[0 < a < 1 \Rightarrow a > a^2 > a^3 > \cdots, \quad a^n < 1, \quad \sqrt[n]{a} < 1 \]

\[a > 1 \Rightarrow a < a^2 < a^3 < \cdots, \quad a^n > 1, \quad \sqrt[n]{a} > 1 \]

\[0 < a < b \Rightarrow a^n < b^n, \quad \sqrt[n]{a} < \sqrt[n]{b} \]

Properties of proportions

Assume that \(\frac{\alpha}{\beta} = \frac{\gamma}{\delta} = \kappa \). Then,

\[\alpha \delta = \beta \gamma \quad , \quad \frac{\alpha \pm \gamma}{\beta \pm \delta} = \kappa \]

\[\frac{\alpha \pm \beta}{\beta} = \frac{\gamma \pm \delta}{\delta} \quad , \quad \frac{\alpha}{\beta \pm \alpha} = \frac{\gamma}{\delta \pm \gamma} \]
Properties of absolute values of real numbers

\[|a| = a, \quad \text{if} \quad a \geq 0 \]
\[= -a, \quad \text{if} \quad a < 0 \]

\[|a| \geq 0 \]

\[|-a| = |a| \]

\[|a|^2 = a^2 \]

\[\sqrt{a^2} = |a| \]

\[|x| \leq \varepsilon \iff -\varepsilon \leq x \leq \varepsilon \quad (\varepsilon > 0) \]

\[|x| \geq a > 0 \iff x \geq a \quad \text{or} \quad x \leq -a \]

\[|a - b| \leq |a| + |b| \]

\[|a - b| = |a| \cdot |b| \]

\[|a^k| = |a|^k \quad (k \in \mathbb{Z}) \]

\[\left| \frac{a}{b} \right| = \frac{|a|}{|b|} \quad (b \neq 0) \]
Properties of powers and logarithms

\[x^0 = 1 \quad (x \neq 0) \]

\[x^\alpha x^\beta = x^{\alpha + \beta} \]

\[\frac{x^\alpha}{x^\beta} = x^{\alpha - \beta} \]

\[\frac{1}{x^\alpha} = x^{-\alpha} \]

\[(x^\alpha)^\beta = x^{\alpha \beta} \]

\[(xy)^\alpha = x^\alpha y^\alpha \quad ; \quad \left(\frac{x}{y} \right)^\alpha = \frac{x^\alpha}{y^\alpha} \]

\[\ln 1 = 0 \]

\[\ln \left(e^\alpha \right) = \alpha \quad (\alpha \in \mathbb{R}) \quad , \quad e^{\ln \alpha} = \alpha \quad (\alpha \in \mathbb{R}^+) \]

\[\ln (\alpha \beta) = \ln \alpha + \ln \beta \]

\[\ln \left(\frac{\alpha}{\beta} \right) = \ln \alpha - \ln \beta = -\ln \left(\frac{\beta}{\alpha} \right) \]

\[\ln \left(\frac{1}{\alpha} \right) = -\ln \alpha \]

\[\ln (\alpha^k) = k \ln \alpha \quad (k \in \mathbb{R}) \]
Derivatives and integrals of elementary functions

\[(c)' = 0 \quad (c = \text{const.}) \quad (\sin x)' = \cos x \quad (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}\]
\[(x^\alpha)' = \alpha x^{\alpha-1} \quad (\alpha \in \mathbb{R}) \quad (\cos x)' = -\sin x \quad (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}\]
\[(e^x)' = e^x \quad (\tan x)' = \frac{1}{\cos^2 x} \quad (\arctan x)' = \frac{1}{1+x^2}\]
\[(\ln x)' = \frac{1}{x} \quad (x > 0) \quad (\cot x)' = -\frac{1}{\sin^2 x} \quad (\arc cot x)' = -\frac{1}{1+x^2}\]
\[(\sinh x)' = \cosh x \quad (\cosh x)' = \sinh x\]

\[
\int dx = x + C ; \quad \int x^\alpha \, dx = \frac{x^{\alpha+1}}{\alpha + 1} + C \quad (\alpha \neq -1)
\]
\[
\int \frac{dx}{x} = \ln |x| + C
\]
\[
\int e^x \, dx = e^x + C
\]
\[
\int \cos x \, dx = \sin x + C ; \quad \int \sin x \, dx = -\cos x + C
\]
\[
\int \frac{dx}{\cos^2 x} = \tan x + C ; \quad \int \frac{dx}{\sin^2 x} = -\cot x + C
\]
\[
\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C
\]
\[
\int \frac{dx}{1+x^2} = \arctan x + C
\]
\[
\int \frac{dx}{x^2-1} = \frac{1}{2} \ln \left|\frac{x-1}{x+1}\right| + C
\]
\[
\int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln \left(x + \sqrt{x^2 \pm 1}\right) + C
\]
COMPLEX NUMBERS

Consider the equation \(x^2 + 1 = 0 \). This has no solution for real \(x \). For this reason we extend the set of numbers beyond the real numbers by defining the \textit{imaginary unit number} \(i \) by

\[
i^2 = -1 \quad \text{or, symbolically,} \quad i = \sqrt{-1}.
\]

Then, the solution of the above-given equation is \(x = \pm i \).

Given the \textit{real} numbers \(x \) and \(y \), we define the \textit{complex number}

\[
z = x + iy.
\]

This is often represented as an ordered pair

\[
z = x + iy \equiv (x, y).
\]

The number \(x = \text{Re} \ z \) is the \textit{real part} of \(z \) while \(y = \text{Im} \ z \) is the \textit{imaginary part} of \(z \). In particular, the value \(z = 0 \) corresponds to \(x = 0 \) and \(y = 0 \). In general, if \(y = 0 \), then \(z \) is a \textit{real number}.

Given a complex number \(z = x + iy \), the number

\[
\overline{z} = x - iy
\]

is called the \textit{complex conjugate} of \(z \) (the symbol \(z^* \) is also used for the complex conjugate). Furthermore, the \textit{real} quantity

\[
|z| = (x^2 + y^2)^{1/2}
\]

is called the \textit{modulus} (or absolute value) of \(z \). We notice that

\[
|z| = |\overline{z}|
\]

\textit{Example:} If \(z = 3 + 2i \), then \(\overline{z} = 3 - 2i \) and \(|z| = |\overline{z}| = \sqrt{13} \).

\textit{Exercise:} Show that, if \(z = \overline{z} \), then \(z \) is \textit{real}, and conversely.

\textit{Exercise:} Show that, if \(z = x + iy \), then

\[
\text{Re} \ z = x = \frac{z + \overline{z}}{2}, \quad \text{Im} \ z = y = \frac{z - \overline{z}}{2i}.
\]
Consider the complex numbers \(z_1 = x_1 + i y_1 \), \(z_2 = x_2 + i y_2 \). As we can show, their sum and their difference are given by

\[
\begin{align*}
\text{z}_1 + \text{z}_2 &= (x_1 + x_2) + i (y_1 + y_2), \\
\text{z}_1 - \text{z}_2 &= (x_1 - x_2) + i (y_1 - y_2).
\end{align*}
\]

Exercise: Show that, if \(\text{z}_1 = \text{z}_2 \), then \(x_1 = x_2 \) and \(y_1 = y_2 \).

Taking into account that \(i^2 = -1 \), we find the product of \(\text{z}_1 \) and \(\text{z}_2 \) to be

\[
\text{z}_1 \text{z}_2 = (x_1 x_2 - y_1 y_2) + i (x_1 y_2 + x_2 y_1).
\]

In particular, for \(\text{z}_1 = z = x + i y \) and \(\text{z}_2 = \bar{z} = x - i y \), we have:

\[
\text{z}\bar{z} = x^2 + y^2 = |\text{z}|^2.
\]

To evaluate the ratio \(\text{z}_1 / \text{z}_2 \) (\(\text{z}_2 \neq 0 \)) we apply the following trick:

\[
\frac{\text{z}_1}{\text{z}_2} = \frac{\text{z}_1 \bar{z}_2}{|\text{z}_2|^2} = \frac{(x_1 + i y_1)(x_2 - i y_2)}{x_2^2 + y_2^2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}.
\]

In particular, for \(z = x + iy \),

\[
\frac{1}{z} = \frac{\bar{z}}{|z|^2} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}.
\]

Properties:

\[
\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \quad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2
\]

\[
\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2, \quad \frac{\overline{z}_1}{\overline{z}_2} = \frac{z_1}{z_2}
\]

\[
|\overline{z}| = |z|, \quad z \overline{z} = |z|^2, \quad |z_1 z_2| = |z_1| |z_2|
\]

\[
|z^n| = |z|^n, \quad \frac{|z_1|}{|z_2|} = \frac{z_1}{z_2}
\]

Exercise: Given the complex numbers \(z_1 = 3 - 2i \) and \(z_2 = -2 + i \), evaluate the quantities \(|z_1 \pm z_2|, \overline{z}_1 z_2 \) and \(\frac{z_1}{z_2} \).
Polar form of a complex number

![Diagram of a complex number in polar form]

A complex number \(z = x + iy \) corresponds to a point of the \(x\)-\(y \) plane. It may also be represented by a vector joining the origin \(O \) of the axes of the complex plane with this point. The quantities \(x \) and \(y \) are the Cartesian coordinates of the point, or, the orthogonal components of the corresponding vector. We observe that

\[
x = r \cos \theta , \quad y = r \sin \theta
\]

where

\[
r = |z| = (x^2 + y^2)^{1/2} \quad \text{and} \quad \tan \theta = \frac{y}{x}.
\]

Thus, we can write

\[
z = x + iy = r (\cos \theta + i \sin \theta)
\]

The above expression represents the **polar form** of \(z \). Note that

\[
\overline{z} = r (\cos \theta - i \sin \theta).
\]

Let \(z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) \) and \(z_2 = r_2 (\cos \theta_2 + i \sin \theta_2) \) be two complex numbers. As can be shown,

\[
z_1 z_2 = r_1 r_2 [\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2)] ,
\]

\[
\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos (\theta_1 - \theta_2) + i \sin (\theta_1 - \theta_2)] .
\]

In particular, the inverse of a complex number \(z = r (\cos \theta + i \sin \theta) \) is written

\[
z^{-1} = \frac{1}{z} = \frac{1}{r} (\cos \theta - i \sin \theta) = \frac{1}{r} [\cos(-\theta) + i \sin(-\theta)] .
\]

Exercise: By using polar forms, show analytically that \(zz^{-1} = 1 \).
Exponential form of a complex number

We introduce the notation

\[e^{i\theta} = \cos \theta + i \sin \theta \]

(this notation is not arbitrary but has a deeper meaning that reveals itself within the context of the theory of analytic functions). Note that

\[e^{-i\theta} = e^{i(-\theta)} = \cos (-\theta) + i \sin (-\theta) = \cos \theta - i \sin \theta . \]

Also,

\[|e^{i\theta}| = |e^{-i\theta}| = \cos^2 \theta + \sin^2 \theta = 1. \]

Exercise: Show that

\[e^{-i\theta} = 1/e^{i\theta} = \bar{e^{i\theta}}. \]

Also show that

\[\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} . \]

The complex number \(z = r (\cos \theta + i \sin \theta) \), where \(r = |z| \), may now be expressed as follows:

\[z = re^{i\theta} \]

It can be shown that

\[z^{-1} = \frac{1}{z} = \frac{1}{r} e^{-i\theta} = \frac{1}{r} e^{i(-\theta)}, \quad \overline{z} = r e^{-i\theta} \]

\[z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}, \quad \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} \]

where \(z_1 = \eta_1 e^{i\theta_1}, \ z_2 = \eta_2 e^{i\theta_2} \).

Example: The complex number \(z = \sqrt{2} - i\sqrt{2} \), with \(|z| = r = 2 \), is written

\[z = 2 \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = 2 \left[\cos \left(\frac{-\pi}{4} \right) + i \sin \left(\frac{-\pi}{4} \right) \right] = 2e^{i(-\pi/4)} = 2e^{-i\pi/4}. \]
Powers and roots of complex numbers

Let $z = r \cos \theta + i \sin \theta = re^{i\theta}$ be a complex number, where $r = |z|$. It can be proven that

$$z^n = r^n e^{in\theta} = r^n \cos n\theta + i \sin n\theta \quad (n = 0, \pm 1, \pm 2, \cdots).$$

In particular, for $z = \cos \theta + i \sin \theta = e^{i\theta}$ (r=1) we find the de Moivre formula

$$(\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta).$$

Note also that, for $z \neq 0$, we have that $z^0 = 1$ and $z^{-n} = 1/z^n$.

Given a complex number $z = r \cos \theta + i \sin \theta$, where $r = |z|$, an nth root of z is any complex number c satisfying the equation $c^n = z$. We write $c = \sqrt[n]{z}$. An nth root of a complex number admits n different values given by the formula

$$c_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right), \quad k = 0, 1, 2, \cdots, (n-1).$$

Example: Let $z = 1$. We seek the 4th roots of unity, i.e., the complex numbers c satisfying the equation $c^4 = 1$. We write

$$z = 1 \left(\cos 0 + i \sin 0 \right) \quad \text{(that is, } r = 1, \ \theta = 0).$$

Then,

$$c_k = \cos \frac{2k\pi}{4} + i \sin \frac{2k\pi}{4} = \cos \frac{k\pi}{2} + i \sin \frac{k\pi}{2}, \quad k = 0, 1, 2, 3.$$

We find:

$$c_0 = 1, \quad c_1 = i, \quad c_2 = -1, \quad c_3 = -i.$$

Example: Let $z = i$. We seek the square roots of i, that is, the complex numbers c satisfying the equation $c^2 = i$. We have:

$$z = 1 \left[\cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right] \quad \text{(that is, } r = 1, \ \theta = \pi/2);$$

$$c_k = \cos \left(\frac{\pi}{2} + 2k\pi \right) + i \sin \left(\frac{\pi}{2} + 2k\pi \right), \quad k = 0, 1;$$

$$c_0 = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \left(1 + i \right),$$

$$c_1 = \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2} \left(1 + i \right).$$
ALGEBRA: SOME BASIC CONCEPTS

Sets

Subset: \[X \subseteq Y \iff (x \in X \Rightarrow x \in Y) ; \]
\[X = Y \iff X \subseteq Y \text{ and } Y \subseteq X \]

Proper subset: \[X \subset Y \iff X \subseteq Y \text{ and } X \neq Y \]

Union of sets: \[X \cup Y = \{ x / x \in X \text{ or } x \in Y \} \]

Intersection of sets: \[X \cap Y = \{ x / x \in X \text{ and } x \in Y \} \]

Disjoint sets: \[X \cap Y = \emptyset \]

Difference of sets: \[X - Y = \{ x / x \in X \text{ and } x \notin Y \} \]

Complement of a subset: \[X \supset Y \text{ ; } X \setminus Y = X - Y \]

Cartesian product: \[X \times Y = \{(x, y) / x \in X \text{ and } y \in Y \} \]

Mapping: \[f : X \rightarrow Y \text{ ; } (x \in X) \rightarrow y = f(x) \in Y \]

Domain/range of \(f \): \[D(f) = X, \quad R(f) = f(X) = \{ f(x) / x \in X \} \subseteq Y ; \]
\(f \) is defined in \(X \) and has values in \(Y \);
y = f(x) is the image of \(x \) under \(f \)

Composite mapping: \[f : X \rightarrow Y, \quad g : Y \rightarrow Z ; \]
\[f \circ g : X \rightarrow Z \text{ ; } (x \in X) \rightarrow g(f(x)) \in Z \]

Injective (1-1) mapping: \[f(x_1) = f(x_2) \iff x_1 = x_2 \text{ , or } \]
x_1 \neq x_2 \iff f(x_1) \neq f(x_2)

Surjective (onto) mapping: \(f(X) = Y \)

Bijective mapping: \(f \) is both injective and surjective \(\Rightarrow \) invertible

Identity mapping: \[f_{id} : X \rightarrow X; \quad f_{id}(x) = x, \quad \forall x \in X \]

Internal operation on \(X \): \[X \times X \rightarrow X \text{ ; } [(x, y) \in X \times X] \rightarrow z \in X \]

External operation on \(X \): \[A \times X \rightarrow X \text{ ; } [(a, x) \in A \times X] \rightarrow y = a \cdot x \in X \]
Groups

A group is a set G, together with an internal operation $G \times G \to G$; $(x, y) \mapsto z = x \cdot y$, such that:

1. The operation is associative: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
2. $\exists e \in G$ (identity): $x \cdot e = e \cdot x = x$, $\forall x \in G$
3. $\forall x \in G$, $\exists x^{-1} \in G$ (inverse): $x^{-1} \cdot x = x \cdot x^{-1} = e$

A group G is abelian or commutative if $x \cdot y = y \cdot x$, $\forall x, y \in G$.

A subset $S \subseteq G$ is a subgroup of G if S is itself a group (clearly, then, S contains the identity e of G, as well as the inverse of every element of S).

Vector space over R

Let $V = \{x, y, z, \ldots \}$, and let $a, b, c, \ldots \in R$. Consider an internal operation $+$ and an external operation \cdot on V:

$+$: $V \times V \to V$; $x + y = z$
\cdot : $R \times V \to V$; $a \cdot x = y$

Then, V is a vector space over R iff

1. V is a commutative group with respect to $+$. The identity element is denoted 0, while the inverse of x is denoted $-x$.
2. The operation \cdot satisfies the following:

 $a \cdot (b \cdot x) = (a b) \cdot x$

 $a \cdot (x + y) = a \cdot x + a \cdot y$

 $1 \cdot x = x$, $0 \cdot x = 0$

A set $\{x_1, x_2, \ldots, x_k\}$ of elements of V is linearly independent iff the equation\(^1\)

\[c_1 x_1 + c_2 x_2 + \ldots + c_k x_k = 0\]

can only be satisfied for $c_1 = c_2 = \ldots = c_k = 0$; otherwise, the set is linearly dependent. The dimension $\dim V$ of V is the largest number of vectors in V that constitute a linearly independent set. If $\dim V = n$, then any system $\{e_1, e_2, \ldots, e_n\}$ of n linearly independent elements is a basis for V, and any $x \in V$ can be uniquely expressed as $x = c_1 e_1 + c_2 e_2 + \ldots + c_n e_n$.

A subset $S \subseteq V$ is a subspace of V if S is itself a vector space under the operations $(+)$ and (\cdot). In particular, the sum $x + y$ of any two elements of S, as well as the scalar multiple ax and the inverse $-x$ of any element x of S, must belong to S. Clearly, this set must contain the identity 0 of V. If S is a subspace of V, then $\dim S \leq \dim V$. In particular, S coincides with V iff $\dim S = \dim V$.

\(^1\) The symbol (\cdot) will often be omitted in the sequel.
Functionals

A functional \(\omega \) on a vector space \(V \) is a mapping \(\omega: V \to \mathbb{R} \); \((x \in V) \to t = \omega(x) \in \mathbb{R} \).

The functional \(\omega \) is linear if \(\omega(ax+by) = a\omega(x) + b\omega(y) \). The collection of all linear functionals on \(V \) is called the dual space of \(V \), denoted \(V^* \). It is itself a vector space over \(\mathbb{R} \), and \(\dim V^* = \dim V \).

Algebras

A real algebra \(A \) is a vector space over \(\mathbb{R} \) equipped with a binary operation \((\cdot | \cdot): A \times A \to A \); \((x | y) = z \), such that, for \(a, b \in \mathbb{R} \),

\[
(ax + by | z) = a \cdot (x | z) + b \cdot (y | z)
\]

\[
(x | ay + bz) = a \cdot (x | y) + b \cdot (x | z)
\]

An algebra is commutative if, for any two elements \(x, y \), \((x | y) = (y | x) \); it is associative if, for any \(x, y, z \), \((x | (y | z)) = ((x | y) | z) \).

Example: The set \(\Lambda^0(\mathbb{R}^n) \) of all functions on \(\mathbb{R}^n \) is a commutative, associative algebra. The multiplication operation \((\cdot | \cdot) : \Lambda^0(\mathbb{R}^n) \times \Lambda^0(\mathbb{R}^n) \to \Lambda^0(\mathbb{R}^n) \) is defined by

\[
(f | g)(x^1, \ldots, x^n) = f(x^1, \ldots, x^n) g(x^1, \ldots, x^n)
\]

Example: The set of all \(n \times n \) matrices is an associative, non-commutative algebra. The binary operation \((\cdot | \cdot) \) is matrix multiplication.

A subspace \(S \) of \(A \) is a subalgebra of \(A \) if \(S \) is itself an algebra under the same binary operation \((\cdot | \cdot) \). In particular, \(S \) must be closed under this operation; i.e., \((x | y) \in S \) for any \(x, y \) in \(S \). We write: \(S \subseteq A \).

A subalgebra \(S \subseteq A \) is an ideal of \(A \) iff \((x | y) \in S \) and \((y | x) \in S \), for any \(x \in S, y \in A \).

Modules

Note first that \(\mathbb{R} \) is an associative, commutative algebra under the usual operations of addition and multiplication. Thus, a vector space over \(\mathbb{R} \) is a vector space over an associative, commutative algebra. More generally, a module \(M \) over \(A \) is a vector space over an associative but (generally) non-commutative algebra. In particular, the external operation \((\cdot) \) on \(M \) is defined by

\[
\cdot: A \times M \to M ; \quad ax = y \quad (a \in A ; \ x, y \in M)
\]

Example: The collection of all \(n \)-dimensional column matrices, with \(A \) taken to be the algebra of \(n \times n \) matrices, and with matrix multiplication as the external operation.
Vector fields

A vector field V on \mathbb{R}^n is a map from a domain of \mathbb{R}^n into \mathbb{R}^n:

$$V : \mathbb{R}^n \supseteq U \to \mathbb{R}^n ; \quad [x = (x^1, \ldots, x^n) \in U \to V(x) = (V^1(x), \ldots, V^n(x)) \in \mathbb{R}^n].$$

The vector x represents a point in U, with coordinates (x^1, \ldots, x^n). The functions $V^i(x)$ ($i=1,\ldots,n$) are the components of V in the coordinate system (x^i).

Given two vector fields U and V, we can construct a new vector field $W=U+V$ such that $W(x)=U(x)+V(x)$. The components of W are the sums of the respective components of U and V.

Given a vector field V and a constant $a \in \mathbb{R}$, we can construct a new vector field $Z=aV$ such that $Z(x)=aV(x)$. The components of Z are scalar multiples (by a) of those of V.

It follows from the above that the collection of all vector fields on \mathbb{R}^n is a vector space over \mathbb{R}.

More generally, given a vector field V and a function $f \in \Lambda^0(\mathbb{R}^n)$, we can construct a new vector field $Z=fV$ such that $Z(x)=f(x)V(x)$. Given that $\Lambda^1(\mathbb{R}^n)$ is an associative algebra, we conclude that the collection of all vector fields on \mathbb{R}^n is a module over $\Lambda^0(\mathbb{R}^n)$ (in this particular case, the algebra $\Lambda^0(\mathbb{R}^n)$ is commutative).

A note on linear independence:

Let $\{V_1, \ldots, V_r\} = \{V_a\}$ be a collection of vector fields on \mathbb{R}^n.

(a) The set $\{V_a\}$ is linearly dependent over \mathbb{R} (linearly dependent with constant coefficients) iff there exist real constants c_1, \ldots, c_r, not all zero, such that

$$c_1 V_1(x) + \ldots + c_r V_r(x) = 0 , \quad \forall x \in \mathbb{R}^n. $$

If the above relation is satisfied only for $c_1 = \ldots = c_r = 0$, the set $\{V_a\}$ is linearly independent over \mathbb{R}.

(b) The set $\{V_a\}$ is linearly dependent over $\Lambda^0(\mathbb{R}^n)$ iff there exist functions $f_1(x)$, ..., $f_r(x)$, not all identically zero over \mathbb{R}^n, such that

$$f_1(x) V_1(x) + \ldots + f_r(x) V_r(x) = 0 , \quad \forall x \equiv (x) \in \mathbb{R}^n. $$

If this relation is satisfied only for $f_1(x)=\ldots=f_r(x) \equiv 0$, the set $\{V_a\}$ is linearly independent over $\Lambda^0(\mathbb{R}^n)$.

There can be at most n elements in a linearly independent system over $\Lambda^0(\mathbb{R}^n)$. These elements form a basis $\{e_1, \ldots, e_n\}=\{e_k\}$ for the module of all vector fields on \mathbb{R}^n. An element of this module, i.e. an arbitrary vector field V, is written as a linear combination of the $\{e_k\}$ with coefficients $V^k \in \Lambda^0(\mathbb{R}^n)$. Thus, at any point $x \equiv (x^i) \in \mathbb{R}^n$, ...
\[V(x) = V^1(x^k) e_1 + ... + V^n(x^k) e_n \equiv (V^1(x^k), ..., V^n(x^k)) . \]

In particular, in the basis \{\(e_k\)\},

\[e_1 \equiv (1,0,0,0,0), \quad e_2 \equiv (0,1,0,0,0), \quad \ldots , e_n \equiv (0,0,0,0,1) . \]

Example: Let \(n=3 \), i.e., \(\mathbb{R}^n=\mathbb{R}^3 \). Call \{\(e_1, e_2, e_3\)\} \(= \{i, j, k\} \). Let \(V \) be a vector field on \(\mathbb{R}^3 \). Then, at any point \(x \equiv (x, y, z) \in \mathbb{R}^3 \),

\[V(x) = V_1(x, y, z) i + V_2(x, y, z) j + V_3(x, y, z) k \equiv (V_x, V_y, V_z) . \]

Now, consider the six vector fields

\[V_1 = i , \quad V_2 = j , \quad V_3 = k , \quad V_4 = y j - y i , \quad V_5 = y k - z j , \quad V_6 = z i - x k . \]

Clearly, the \{\(V_1, V_2, V_3\)\} are linearly independent over \(\Lambda^0(\mathbb{R}^3) \), since they constitute the basis \(\{i, j, k\} \). On the other hand, the \(V_4, V_5, V_6 \) are separately linearly dependent on the \{\(V_1, V_2, V_3\)\} over \(\Lambda^0(\mathbb{R}^3) \). Moreover, the set \{\(V_4, V_5, V_6\)\} is also linearly dependent over \(\Lambda^2(\mathbb{R}^3) \), since \(z V_4 + x V_5 + y V_6 = 0 \). Thus, the set \{\(V_1, \ldots, V_6\)\} is linearly dependent over \(\Lambda^1(\mathbb{R}^3) \). On the other hand, the system \{\(V_1, \ldots, V_6\)\} is linearly independent over \(\mathbb{R} \), since the equation \(c_1 V_1 + \ldots + c_6 V_6 = 0 \), with \(c_1 , \ldots , c_6 \in \mathbb{R} \) (constant coefficients), can only be satisfied for \(c_1 = \ldots = c_6 = 0 \). In general,

there is an infinite number of linearly independent vector fields on \(\mathbb{R}^n \) over \(\mathbb{R} \), but only \(n \) linearly independent fields over \(\Lambda^0(\mathbb{R}^n) \).

Derivation on an algebra

Let \(L \) be an operation on an algebra \(A \) (an operator on \(A \)):

\[L : A \rightarrow A ; \quad (x \in A) \rightarrow y = Lx \in A . \]

\(L \) is a derivation on \(A \) iff, \(\forall x, y \in A \) and \(a, b \in \mathbb{R} \),

\[L(ax+by) = aL(x) + bL(y) \quad \text{(linearity)} \]

\[L(x \mid y) = (Lx \mid y) + (x \mid Ly) \quad \text{(Leibniz rule)} \]

Example: Let \(A=\Lambda^0(\mathbb{R}^n)=\{ f(x^1, \ldots, x^n) \} \), and let \(L \) be the linear operator

\[L = \phi^1(x^k) \partial / \partial x^1 + \ldots + \phi^n(x^k) \partial / \partial x^n \equiv \phi^i(x^k) \partial / \partial x^i , \]

where the \(\phi^i(x^k) \) are given functions. As can be shown,

\[L \left[f(x^k) g(x^k) \right] = [L f(x^k)] g(x^k) + f(x^k) L g(x^k) . \]

Hence, \(L \) is a derivation on \(\Lambda^0(\mathbb{R}^n) \).
Lie algebra

An algebra \(\mathcal{L} \) over \(R \) is a (real) Lie algebra with binary operation \([\cdot, \cdot]: \mathcal{L} \times \mathcal{L} \to \mathcal{L} \) (Lie bracket) iff this operation satisfies the properties:

\[
[ax + by, z] = a[x, z] + b[y, z] \\
[x, y] = -[y, x] \quad (\text{antisymmetry}) \\
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \quad (\text{Jacobi identity})
\]

(where \(x, y, z \in \mathcal{L} \) and \(a, b \in R \)). Note that, by the antisymmetry of the Lie bracket, the first and third properties are written, alternatively,

\[
[ax + by + bz] = a[x, y] + b[x, z], \\
[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.
\]

A Lie algebra is a non-associative algebra, since, as follows by the above properties,

\[
[x, [y, z]] \neq [[x, y], z].
\]

Example: The algebra of \(n \times n \) matrices, with \([A, B] = AB - BA \) (commutator).

Example: The algebra of all vectors in \(\mathbb{R}^3 \), with \([a, b] = a \times b \) (vector product).

Lie algebra of derivations

Consider the algebra \(A = \Lambda^0(\mathbb{R}^n) = \{ f(x^1, \ldots, x^n) \} \). Consider also the set \(D(A) \) of linear operators on \(A \), of the form

\[
L = \varphi^i(x^i) \frac{\partial}{\partial x^i} \quad (\text{sum on } i = 1, 2, \ldots, n).
\]

These first-order differential operators are derivations on \(A \) (the Leibniz rule is satisfied). Now, given two such operators \(L_1, L_2 \), we construct the linear operator (Lie bracket of \(L_1 \) and \(L_2 \)), as follows:

\[
[L_1, L_2] = L_1 L_2 - L_2 L_1; \\
[L_1, L_2] f(x^k) = L_1(L_2 f(x^k)) - L_2(L_1 f(x^k)) .
\]

It can be shown that \([L_1, L_2] \) is a first-order differential operator (a derivation), hence is a member of \(D(A) \). (This is not the case with second-order operators like \(L_1 L_2 \)!) Moreover, the Lie bracket of operators satisfies all the properties of the Lie bracket of a general Lie algebra (such as antisymmetry and Jacobi identity). It follows that

the set \(D(A) \) of derivations on \(\Lambda^0(\mathbb{R}^n) \) is a Lie algebra, with binary operation defined as the Lie bracket of operators.
Direct sum of subspaces

Let V be a vector space over a field K (where K may be R or C), of dimension $\dim V=n$. Let S_1, S_2 be disjoint (i.e., $S_1 \cap S_2 = \{0\}$) subspaces of V. We say that V is the direct sum of S_1 and S_2 if each vector of V can be uniquely represented as the sum of a vector of S_1 and a vector of S_2. We write: $V = S_1 \oplus S_2$. In terms of dimensions, $\dim V = \dim S_1 + \dim S_2$. We similarly define the vector sum of three subspaces of V, each of which is disjoint from the direct sum of the other two (i.e., $S_1 \cap (S_2 \oplus S_3) = \{0\}$, etc.).

Homomorphism of vector spaces

Let V, W be vector spaces over a field K. A mapping $\Phi: V \rightarrow W$ is said to be a linear mapping or homomorphism if it preserves linear operations, i.e.,

$$\Phi(x+y) = \Phi(x) + \Phi(y), \quad \Phi(kx) = k \Phi(x), \quad \forall \, x, y \in V \text{ and } k \in K.$$

A homomorphism which is also bijective (1-1) is called an isomorphism.

The set of vectors $x \in V$ mapping under Φ into the zero of W is called the kernel of the homomorphism Φ:

$$\text{Ker } \Phi = \{ x \in V : \Phi(x) = 0 \}.$$

Note that $\Phi(0)=0$, for any homomorphism (clearly, the two zeros refer to different vector spaces). Thus, in general, $0 \in \text{Ker } \Phi$.

If $\text{Ker } \Phi = \{0\}$, then the homomorphism Φ is also an isomorphism of V onto a subspace of W. If, moreover, $\dim V = \dim W$, then the map $\Phi: V \rightarrow W$ is itself an isomorphism. In this case, $\text{Im } \Phi = W$, where, in general, $\text{Im } \Phi$ (image of the homomorphism) is the collection of images of all vectors of V under the map Φ.

The algebra of linear operators

Let V be a vector space over a field K. A linear operator A on V is a homomorphism $A : V \rightarrow V$. Thus,

$$A(x+y) = A(x) + A(y), \quad A(kx) = kA(x), \quad \forall \, x, y \in V \text{ and } k \in K.$$

The sum $A + B$ and the scalar multiplication kA ($k \in K$) are linear operators defined by

$$(A + B)x = A x + B x, \quad (kA)x = k(Ax).$$

Under these operations, the set $\text{Opt}(V)$ of all linear operators on V is a vector space. The zero element of that space is a zero operator 0 such that $0x=0$, $\forall \, x \in V$.

19
Since \(A \) and \(B \) are mappings, their composition may be defined. This is regarded as their product \(AB \):

\[
(AB)x \equiv A(Bx) \quad \forall x \in V.
\]

Note that \(AB \) is a linear operator on \(V \), hence belongs to \(\text{Op}(V) \). In general, operator products are non-commutative: \(AB \neq BA \). However, they are associative and distributive over addition:

\[
(AB)C = A(BC) \equiv ABC, \quad A(B+C) = AB + AC.
\]

The identity operator \(E \) is the mapping of \(\text{Op}(V) \) which leaves every element of \(V \) fixed: \(E x = x \). Thus, \(AE = EA = A \). Operators of the form \(kE \) \((k \in K)\), called scalar operators, are commutative with all operators. In fact, any operator commutative with every operator of \(\text{Op}(V) \) is a scalar operator.

It follows from the above that the set \(\text{Op}(V) \) of all linear operators on a given vector space \(V \) is an algebra. This algebra is associative but (generally) non-commutative.

An operator \(A \) is said to be invertible if it represents a bijective (1-1) mapping, i.e., if it is an isomorphism of \(V \) onto itself. In this case, an inverse operator \(A^{-1} \) exists such that \(AA^{-1} = A^{-1}A = E \). Practically this means that, if \(A \) maps \(x \in V \) onto \(y \in V \), then \(A^{-1} \) maps \(y \) back onto \(x \). For an invertible operator \(A \), \(\ker A = \{0\} \) and \(\text{im} A = V \).

Matrix representation of a linear operator

Let \(A \) be a linear operator on \(V \). Let \(\{e_i\} \) \((i=1,...,n)\) be a basis of \(V \). Let

\[
A e_k = e_i A_{ik} \quad \text{(sum on } i)\]

where the \(A_{ik} \) are real or complex, depending on whether \(V \) is a vector space over \(R \) or \(C \). The \(n \times n \) matrix \(A = [A_{ik}] \) is called the matrix of the operator \(A \) in the basis \(\{e_i\} \).

Now, let \(x = x_i e_i \) (sum on \(i \)) be a vector in \(V \), and let \(y = A x \). If \(y = y_i e_i \), then, by the linearity of \(A \),

\[
y_i = A_{ik} x_k \quad \text{(sum on } k)\.
\]

In matrix form,

\[
[y]_{n \times 1} = [A]_{n \times n} [x]_{n \times 1}.
\]

Next, let \(A, B \) be linear operators on \(V \). Define their product \(C = AB \) by

\[
Cx = (AB)x \equiv A(Bx) \quad x \in V.
\]

Then, for any basis \(\{e_i\} \),

\[
Ce_k = A(Be_k) = e_i A_{ij} B_{jk} = e_i C_{ik} \quad \Rightarrow
\]
\[C_{ik} = A_{ij} B_{jk} \]

or, in matrix form,

\[C = A B . \]

That is,

the matrix of the product of two operators is the product of the matrices of these operators, in any basis of \(V \).

Consider now a change of basis defined by the transition matrix \(T = [T_{ik}] \):

\[e_k' = e_i T_{ik} . \]

The inverse transformation is

\[e_k = e_i' (T^{-1})_{ik} . \]

Under this basis change, the matrix \(A \) of an operator \(A \) transforms as

\[A' = T^{-1} A T \quad \text{(similarity transformation)} . \]

Under basis transformations, the trace and the determinant of \(A \) remain unchanged:

\[tr A' = tr A , \quad det A' = det A . \]

An operator \(A \) is said to be nonsingular (singular) if \(detA \neq 0 \) (\(detA = 0 \)). Note that this is a basis-independent property. Any nonsingular operator is invertible, i.e., there exists an inverse operator \(A^{-1} \in Op(V) \) such that \(A A^{-1} = A^{-1} A = E \). Since an invertible operator represents a bijective mapping (i.e., both 1-1 and onto), it follows that \(\text{Ker} A = \{0\} \) and \(\text{Im} A = V \). If \(A \) is invertible (nonsingular), then, for any basis \(\{e_i\} \) \((i = 1, \ldots, n)\) of \(V \), the vectors \(\{A e_i\} \) are linearly independent and hence also constitute a basis.

Invariant subspaces and eigenvectors

Let \(V \) be an \(n \)-dimensional vector space over a field \(K \), and let \(A \) be a linear operator on \(V \). The subspace \(S \) of \(V \) is said to be invariant under \(A \) if, for every vector \(x \) of \(S \), the vector \(A x \) again belongs to \(S \). Symbolically, \(A S \subseteq S \).

A vector \(x \neq 0 \) is said to be an eigenvector of \(A \) if it generates a one-dimensional invariant subspace of \(V \) under \(A \). This means that an element \(\lambda \in K \) exists, such that

\[A x = \lambda x . \]

The element \(\lambda \) is called an eigenvalue of \(A \), to which eigenvalue the eigenvector \(x \) belongs. Note that, trivially, the null vector \(0 \) is an eigenvector of \(A \), belonging to any
eigenvalue λ. The set of all eigenvectors of A, belonging to a given λ, is a subspace of V called the proper subspace belonging to λ.

It can be shown that the eigenvalues of A are basis-independent quantities. Indeed, let $A=[A_{ik}]$ be the $(n\times n)$ matrix representation of A in some basis $\{e_i\}$ of V, and let $x=x_ie_i$ be an eigenvector belonging to λ. We denote by $X=[x_i]$ the column vector representing x in that basis. The eigenvalue equation for A is written, in matrix form,

$$A_{ik}x_k = \lambda x_i \quad \text{or} \quad A X = \lambda X .$$

This is written

$$(A-\lambda 1_n) X = 0 .$$

This equation constitutes a linear homogeneous system for $X=[x_i]$, which has a nontrivial solution iff

$$\det (A-\lambda 1_n) = 0 .$$

This polynomial equation determines the eigenvalues $\lambda_i \ (i=1,...,n)$ (not necessarily all different from each-other) of A. Since the determinant of the matrix representation of an operator [in particular, of the operator $(A-\lambda E)$ for any given λ] is a basis-independent quantity, it follows that, if the above equation is satisfied for a certain λ in a certain basis (where A is represented by the matrix A), it will also be satisfied for the same λ in any other basis (where A is represented by another matrix, say, $A \,'$). We conclude that the eigenvalues of an operator are a property of the operator itself and do not depend on the choice of basis of V.

If we can find n linearly independent eigenvectors $\{x_i\}$ of A, belonging to the corresponding eigenvalues λ_i, we can use these vectors to define a basis for V. In this basis, the matrix representation of A has a particularly simple diagonal form:

$$A = \text{diag} \ (\lambda_1, \ldots, \lambda_n) .$$

Using this expression, and the fact that the quantities $\text{tr}A$, $\det A$ and λ_i are invariant under basis transformations, we conclude that, in any basis of V,

$$\text{tr}A = \lambda_1 + \lambda_2 + \ldots + \lambda_n , \quad \det A = \lambda_1 \lambda_2 \ldots \lambda_n .$$

We note, in particular, that all eigenvalues of an invertible (nonsingular) operator are nonzero. Indeed, if even one is zero, then $\det A=0$ and A is singular.

An operator A is called nilpotent if $A^m=0$ for some natural number $m>1$. The smallest such value of m is called the degree of nilpotency, and it cannot exceed n. All eigenvalues of a nilpotent operator are zero. Thus, such an operator is singular (non-invertible).

An operator A is called idempotent (or projection operator) if $A^2=A$. It follows that $A^n=A$, for any natural number m. The eigenvalues of an idempotent operator can take the values 0 or 1.
BASIC MATRIX PROPERTIES

\[(A + B)^T = A^T + B^T \quad \text{and} \quad (AB)^T = B^T A^T\]
\[(A + B)^\dagger = A^\dagger + B^\dagger \quad \text{where} \quad M^\dagger \equiv (M^T)^\ast = (M^\ast)^T\]
\[(kA)^T = kA^T \quad \text{and} \quad (kA)^\dagger = k^\ast A^\dagger \quad (k \in C)\]
\[(AB)^{-1} = B^{-1} A^{-1} \quad \text{and} \quad (A^T)^{-1} = (A^{-1})^T \quad \text{and} \quad (A^\dagger)^{-1} = (A^{-1})^\dagger\]
\[[A, B]^T = [B^T, A^T] \quad \text{and} \quad [A, B]^\dagger = [B^\dagger, A^\dagger]\]

\[A^{-1} = \frac{1}{\det A} \text{adj} A \quad (\det A \neq 0)\]
\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix}
d & -b \\
-c & a \\
\end{bmatrix}
\]

tr(κA + λB) = κtrA + λtrB

trA^T = trA \quad \text{and} \quad trA^\dagger = (trA)^\ast

tr(AB) = tr(BA), \quad tr(ABC) = tr(BCA) = tr(CAB), \quad \text{etc.}

\[tr[A, B] = 0\]

\[\det A^T = \det A \quad \text{and} \quad \det A^\dagger = (\det A)^\ast\]

\[\det(AB) = \det(BA) = \det A \cdot \det B\]

\[\det(A^{-1}) = 1/\det A\]

\[\det(cA) = c^n \det A \quad (c \in C, \ A \in gl(n, C))\]

If any row or column of A is multiplied by c, then so is det A.

\[[A, B] = -[B, A] \equiv AB - BA\]
\[[A, B + C] = [A, B] + [A, C] \quad \text{and} \quad [A + B, C] = [A, C] + [B, C]\]
\[[A, BC] = [A, B][C + B[A, C]] \quad \text{and} \quad [AB, C] = A[B, C] + [A, C]B\]
\[[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0\]
\[[[A, B], C] + [[B, C], A] + [[C, A], B] = 0\]

Let \(A = A(t) = [a_{ij}(t)], \ B = B(t) = [b_{ij}(t)], \) be \((n\times n)\) matrices. The derivative of A (similarly, of B) is the \((n\times n)\) matrix \(dA/dt\), with elements

\[
\left(\frac{dA}{dt}\right)_{ij} = \frac{d}{dt} a_{ij}(t) \quad .
\]

The integral of A (similarly, of B) is the \((n\times n)\) matrix defined by

\[
\left(\int A(t) \, dt\right)_{ij} = \int a_{ij}(t) \, dt \quad .
\]
\[
\frac{d}{dt} (A \pm B) = \frac{dA}{dt} \pm \frac{dB}{dt} ; \quad \frac{d}{dt} (AB) = \frac{dA}{dt} B + A \frac{dB}{dt}
\]
\[
\frac{d}{dt} [A, B] = \left[\frac{dA}{dt}, B \right] + \left[A, \frac{dB}{dt} \right]
\]
\[
\frac{d}{dt} (A^{-1}) = -A^{-1} \frac{dA}{dt} A^{-1} \quad \Rightarrow \quad d (A^{-1}) = -A^{-1} (dA) A^{-1}
\]
\[
tr \left(\frac{dA}{dt} \right) = \frac{d}{dt} (trA)
\]

Let \(A = A(x, y) \). Call \(\partial_\alpha / \partial x \equiv \partial_x A \equiv A_x \), etc.:
\[
\partial_x (A^{-1} A_x) - \partial_y (A^{-1} A_y) + [A^{-1} A_x, A^{-1} A_y] = 0
\]
\[
\partial_x (A_x A^{-1}) - \partial_y (A_x A^{-1}) - [A_x A^{-1}, A_y A^{-1}] = 0
\]
\[
A(A^{-1} A_x)_y A^{-1} = (A_y A^{-1})_x \Leftrightarrow A^{-1} (A_y A^{-1})_x A = (A^{-1} A_x)_y
\]

\[
e^A = \exp A = \sum_{n=0}^{\infty} \frac{A^n}{n!} = 1 + A + \frac{A^2}{2} + \cdots
\]
\[
B e^A B^{-1} = e^{BAB^{-1}}
\]
\[
(e^A)^* = e^{A^*} ; \quad (e^A)^T = e^{A^T} ; \quad (e^A)^* = e^{A^*} ; \quad (e^A)^{-1} = e^{-A}
\]
\[
e^A e^B = e^B e^A = e^{A+B} \quad \text{when} \quad [A, B] = 0
\]
In general, \(e^A e^B = e^C \) where
\[
C = A + B + \frac{1}{2} [A, B] + \frac{1}{12} ([A, [A, B]] + [B, [B, A]]) + \cdots
\]

By definition, \(\log B = A \Leftrightarrow B = e^A \).
\[
\det (e^A) = e^{trA} \Leftrightarrow \det B = e^{tr(\log B)} \Leftrightarrow tr (\log B) = \log (\det B)
\]
\[
\det (1 + \delta A) \simeq 1 + tr \delta A , \quad \text{for infinitesimal} \quad \delta A
\]
\[
tr (A^{-1} A_x) = tr (A_x A^{-1}) = tr (\log A)_x = [tr (\log A)]_x = [\log (\det A)]_x
\]