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MATHEMATICAL FORMULASAND PROPERTIES

Trigonometric formulas

sif A+ cod A= 1 : tank=—X cot(:gx:_l
COSX sinx  tarx
cofx=— T . sirf x= ! . tarf x
1+ tarf x 4 cofx I tahx

sin(A+ B)=sinAcosB+ COHA siB
cos(A+ B)= cosA coBF sirA siB
tanAx tanB CotA coBx ]

tan(A+tB)=—— , cot(A+ B———
1F tanA tamB coBt cofA

sin 2A = 2sinA COA
cos2A= co8 A— sihA= 2cdsA- 4 -12sirf A

a1 98 = 2tanA ot coft A- 1
1-tarf A 2CcotA

sinA+ sinB= ZsinAJzr B coSs

SinA— sinB= ZsinA; B cosA; B

cosA+ coB= ZCosA;—B ceps‘;—B

cosA— coB= ZSiHA%B sinB;—A

sinAsinBzé [cosA—- B)} cos@+ B)]
COSA cosBzé [cosA+ B } cosi- B )]

sinAcosB:% [sin@+ B} sin(: B)]

sin(-A)=—-sinA , Ccos{tA)» COA
tanA)=—tanA , cot{A }x - cofA
sin(%iA): COsA , cos%iAé:i SirA
sin(ztA)=FsinA , cosft+ A¥x— cop
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Basic trigonometric equations

T X=a+2kr _ .
sinx = sinag = {X=(2k+1)7r—a k= O£ 1+ 2,
_ X=a+2kr _
COSX= CO%r = {X:2k7r—a k= O & 2,
tanx = tanr = X=a+kr k= Of I+ 2;-
cotx= cole = X=a+ kr (k= O L+t 2+
Ty — i x=2kr—a _ o
sinx=-sina = {X=a+(2k+1)7r k= O Lt 2,

_ x=(ktlr-a |
COSX=— CO%x —> {X=0H—(2k+1)7z k_ o & 2.

Hyperbolic functions

X X _ AaX . =X
coshx = €re ; sintx= €-¢& © tanhkx= sinh X e e = 1
2 2 coshx e +e* cothx

cosHf x— sinf x= 1

coshEx )= coshkx ,  sink(x 3— sink



Power for mulas

(ath)?=a’+2ab+ ¥
(axb)®=a®+3a’b+3af+ 1§
a’-b?’=(a+b(a b

a®+b®=(at h(&F abr B)

(a+b"=a"+ nflm% a{FZt’H%I(n_Z) a3B++ B (BL23;)

Quadratic equation: ax*+bx+c=0

Call D=b?-4ac (discriminant)

b+JD

2a

Roots: x=

Roots are real and distinctD>0; real and equal iD=0; complex conjugate iD<0.

Geometric formulas
A= area or surface areaV= volume ; P= perimeter
Parallelogram of badeand altituden: A=bh
Triangle of basé and altituden: A= (1/2)bh
Trapezoid of altitudé and parallel sidesandb: A= (1/2)@+b)h
Circle of radiug : P=2ar , A=ar®
Ellipse of semi-major axia and semi-minor axis :  A=zab
Parallelepiped of base arAand height: V=Ah
Cylindroid of base area and heighh: V=Ah
Sphere of radius:  A=4xr® , V= (4/3)r?

Circular cone of radiusand height: V= (1/3)r?h



Properties of inequalities

a<b and b« c=> & C
a>band b> a= a b
a<b= -a>-b

O<a<b > l>E
a b

a<band < d= a &« b d

O<a<b and 0< < d=> a& bd

O<a<l= a>a&>a>--, d<1, Ya<1
a>l = a<d<d<-, d>1, Ya>1

O<a<b = a'<b", Ya<¥b

Properties of proportions

Assume thatﬁzlzzc. Then,
p O
aty
aod = , =K
Br Y
atf yto a vy
p ) frta oty



Properties of absolute values of real numbers

laj]=a, if a>0

=-a, if a<0
|laj>0
-al=|a|
|af=a’
\/¥:|a|
|X|<e & —e<x<e (6>0)
|X|>a>0 < x>a or x<—¢
lal-1b|< lat b Jat P |
|la-bl=|a|lb]
la“|=laf ke Z)

a

b

_lal
=15 ©*0




Properties of powersand logarithms

x°=1  (x=0)

Xaxﬁ:X(lJrﬂ
X ap
X_ﬁ_x
1 -a
==X
X
) =
a X “ Xa
(xy)* =Xy ; (—j - =
y y
In1=0
In(ea):a (aeR) , elna:a (aeR+)

In(ef)=Ina+Inp

o[- wo(
(2)-n

In(e*)=kine (keR)



Derivatives and integrals of elementary functions

(c)'=0 (c= const) (sin ¥ = cos x (arcsinX ¥ -
1-x
(x*)Y=ax** (¢e R (cosxj=— sinx (arccos' ¥ — ! =
1-x
(e*) =€ (tan X = (arctanx')—L
cos X e
, 1 1 1
(Inx)'== (x>0) (cotx)=-— (arccotx)=———
X sin® x 1+ X
(sinhx) = coshx (coslx'}> shnx
Xa+l
jdx: x+ C ; jxadx= +C (az-1)
a+1
j X |x|+C
X
J'exdx: €+ C

J'cosxdx= sinx+ C ; J'sinxdx:— cosx C

dx

=— cotx+ C
sirf x

J-C:;(X:tanXJrC X J'

I dx =arcsinx+ C

V1-x2

I Xzzarctanx+C
1+ x
J-Z(j_x:ilnx;+c
X*-1 2 |x+

d
I\/Xziilzln(x+\/xzil)+c




COMPLEX NUMBERS

Consider the equationé +1=0. This has no solution for real For this reason we
extend the set of numbers beyond the real numbedefining theimaginary unit
numberi by

i2=-1 or, symbolically, i=+-1.
Then, the solution of the above-given equationFst i .
Given thaeal numbersx andy, we define theomplex number
Z=Xx+iy.
This is often represented as an ordered pair
zZ=x+iy=(x,y).
The numberx=Re z is thereal partof z while y=Im z is theimaginary partof z
In particular, the valuez= 0 corresponds to«=0 and y= 0. In general, ify= 0,
then z is areal number.
Given a complex number = x+ iy, the number
Z=X—1y

is called thecomplex conjugatef z (the symbol z* is also used for the complex
conjugate). Furthermore, tiheal quantity

212 0+
is called themodulus(or absolute value) af. We notice that
|z]=1Z].
Example: If z= 3+2i,then Z=3-2i and |z|=[z v/ 15.
Exercise. Show that, ifz=", then z isreal, and conversely.

Exercise: Show that, ifz = x+iy, then

NI
N
|
N

Rez= x:i , Imz= y=——.
2 2i



Consider the complex numbers= x;+ iy1, z = Xo+ 1Yy, . As we can show, their
sum and their difference are given by

z+2= (Xt X)) +i(y1t+y2),
z7-2=(xx—%)+i(1—¥).
Exercises Show that, ifz= z, , thenx;=x; andy;=y,.
Taking into account that =—1, we find the product of; and z, to be
22= (XX —YY2) +i XYz + Xo W) -
In particular, forzz= z=x+iy andz=Z= x—iy, we have:
z7z= X+ y=| 74
To evaluate the rati@;/ z2 (z # 0) we apply the following trick:

a_2z2z_ 7z (x (¥ 1y X% yy ., Xy X:
z %3 |3f X+ ¥ X+ ¥ ¥+ ¥

In particular, forz = x+iy,

Tz | R+ Y R+ ¥ & Y

1 zZ_ z  xiy_ X , y

Properties:

|7|:|Z| ) Z_Z:| 21 ) |1ZZZ4: |1Z||22

12" |= |2 H=U
z| |z

Exercise: Given the complex numberg = 3—-2i and z= -2+ i, evaluate the
quantities |z + z |, Z z and z/z .



Polar form of a complex number

y
e ——— o Z=X+1Y
r
)0 X
@) X

A complex numberz = x+iy = (X, y) corresponds to a point of tley plane. It
may also be represented by a vector joining thgiro of the axes of the complex
plane with this point. The quantitigsandy are the Cartesian coordinates of the point,
or, the orthogonal components of the correspondaagor. We observe that

X=rcosf , y=rsind
where
r=lz|= (@+y*)*?  and tang=2 .

X

Thus, we can write

Z=x+iy=r(cosd+isinb)

The above expression representspblar formof z Note that
Z=r(cosd—i sirg .

Let z=r; (cosf, +i sinf;) and z=r, (cosf, + i sinfy) be two complex
numbers. As can be shown,

zz=1trfcos@,+6,)+isin@.+6,)] .
4 _ Y cos@,—-6,)+i sin@,-6,)] .
5z 0
In particular, the inverse of a complex numlzerr (cosf + i sind) is written

7= Y icosp—ising =2 [costo yi sindo .
Z r r

Exercise: By using polar forms, show analytically thaz *=1.
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Exponential form of a complex number

We introduce the notation
e’ =cosf + i sing

(this notation is not arbitrary but has a deepeamrgy that reveals itself within the
context of the theory of analytic functions). Nttat

e’ =d? =cos6 )+ isin(h )= cod—i sif .
Also,
e’ =|e'’ E cod0+ sihd= .

Exercises Show that

e?=1/d’= &,
Also show that
0, 40 0 A0
cos@:% , sirﬁ:i_

The complex number=r (cosf+isinfd), wherer =|z|, may now be expressed
as follows:

It can be shown that

'(61‘*'92)

2= ne

where z =r,e”, z= 1 ¢é”.

Example. The complex numbez=+/2-iV2, with |z|=r=2, is written

z= 2[£ - |£j = Z{CO{—%)H sirE—%ﬂ S DN YL

11



Powers and roots of complex numbers

Let z=r (cosf + i sind) = re'’ be a complex number, where= |z|. It can be
proven that

z"=r"e"=r"(cosnd+isinnd) (= 0x 1+ 2;
In particular, for z= cosf + i sind = €'’ (r=1) we find thede Moivre formula
(cosf +i sid ) = (cosd+i sind
Note also that, foz =0, we have thaz’=1 and z™"= 1/z".

Given a complex numbez=r (cosf + i sind), wherer = |z|, an nth root of zis

any complex numbec satisfying the equatiom "= z. We writec = Yz. An nth root
of a complex number admits different values given by the formula

ck:{‘/?(cose+r]2k7[+i sin0+r12k”j , k=012;- (- 1.

Example: Let z= 1. We seek the 4th roots of unity, i.e., the carplumbersc
satisfying the equatiort’= 1. We write

z=1 (cosD +i sin0) (thatis,r=1, 6=0).

Then,
2kr . . 2Kkt kr . . kr
C =CO0S—+i si— = cos—+i sir— ,k= 0,1,2.
4 4 2 2
We find:
=1, =i, c=-1, c=-i.
Example: Let z=i. We seek the square roots gthat is, the complex humbecs

satisfying the equatiom®= i . We have:

z =1 [cos(n/2) +i sin(z/2)] (thatis,r=1, 0= x/2);

(m12)+2knr . . (m12)+ XKx .
ckzcosfﬂsm# , k=0,;
C,=Cos( /4)ising /4):% &i ),
J2

¢, =cos(5r /4)i sin(F /4):—72 @&i)
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ALGEBRA: SOME BASIC CONCEPTS

Sets

Subset: XcY & (xeX = xeY);
X=Y < XcYand YCX

Proper subset: Xc¥Y & XcY and XY
Union of sets: XY ={ x/ xeX or xeY}
Intersection of sets: RY ={ x/ xeX and xeY'}
Disjoint sets: xY =9

Difference of sets: XY ={ x/ xeX and xgY}

Complement of a subset: =¥ ; X\Y =X-Y

Cartesian product: XY ={(x,y)/ xeX and yeY}
Mapping: EX>Y; xeX)->y=f(X)eY
Domain/range of f: Df)=X, R(f)=f(X)={f(X)/xeX} Y ;

f isdefinedin X andhas valuesn Y ;
y=f (X) is theimageof x underf

Composite mapping: X->Y, g ¥Y>Z,;
fog: X—>2Z; (xeX)—>9(f(X) ez

Injective (1-1) mapping: ) =F(x) < x1=x2 , or
XFEX <& T(x) #T(X)

Surjective (onto) mapping: (X)=Y

Bijective mapping: f is both injective and sctjee = invertible
Identity mapping: ifd : X—> X ; fig(¥)=x, VxeX

Internal operation on X: XX->X; [Ky)eXxX]—>zeX
External operation on X: AX-> X [@X) eAxX]>y=axeX

13



Groups

A groupis a set5, together with an internal operati@x G — G; (X, y) > zZ = X,
such that:

1. The operation iassociative x-(y-2) = (X-y)- z
2. FeeG (dentity) : x-e=ex=x, VxeG
3. VxeG, 3x'eG (invers§: x x=x-x'=e

A groupG is abelianor commutativef x-y =y-x, Vx,yeG.

A subsetSCG is asubgroupof G if S is itself a group (clearly, theB,contains the
identity e of G, as well as the inverse of every elemer pf

Vector spaceover R

Let V={x,y,z ...}, and let a, b, c, ... eR Consider an internal operation + and an
external operationonV :

+:VxV-o>V ; x+ty=12z
I RxV->V ,; ax=y

Then,V is avector space over K

1. Vis a commutative group with respect to + . Thentdy element is denoted
0, while the inverse ok is denoted—x .
2. The operationsatisfies the following:
a:(b-x)= (ab)-x
(atb)-x = a-x + b-x
a-(x+y) = ax +ay
Ix=x, Ox=0

A set {X1, X2, ... ,x} of elements ofV is linearly independeriff the equation
Ci1X1+ CXot+ ... +CX=0

can only be satisfied forc; = ¢, = ... = cx = 0 ; otherwise, the set iknearly
dependent The dimensiondimV of V is the largest number of vectors Vhthat
constitute a linearly independent set. If #fiam, then any systeme{, &, ... ,e;} of
n linearly independent elements isbasis for V, and anyxeV can be uniquely
expressed agx =cie+ e+ ... +Cr 6.

A subsetSCV is asubspaceof V if Sis itself a vector space under the operations (+)

and (). In particular, the sum+y of any two elements o as well as the scalar
multiple ax and the inverse x of any elemenk of S must belong t&. Clearly, this
set must contain the identi/of V. If Sis a subspace of, then dimS< dimV. In
particular,S coincides withv iff dimS=dimV.

! The symbol { will often be omitted in the sequel.

14



Functionals

A functionalw on a vector spacé is a mappingem: V—> R ; (xeV) - t= o(X)eR.
The functionalw is linear if w(a-xtb-y)=a-o(x)+b-w(y). The collection of all linear
functionals onV is called thedual spaceof V, denotedv*. It is itself a vector space
overR, and dinv*= dimV.

Algebras

A real algebra A is a vector space oveR equipped with a binary operation
(]): AxA—> A ; X|y) =z, suchthat, fora,b eR,

@x+byl|2=a(x|2 +b(y|2
xlay+b2) =a(x]y) +b(x|2

An algebra iscommutativeif, for any two elementx, y, X |y) = (y|Xx); itis
associativef, for anyx,y,z, x| 12)=((x]y) |2 .

Example:The setA’(R") of all functions orR" is a commutative, associative algebra.
The multiplication operation- |-) : A°(R")x A°Y(R)— A%R") is defined by

(Flo)Ot, . X)) =F 0, .., XN g0, ... . XY

Example:The set of alhxn matrices is an associative, non-commutative akyebine
binary operation-(-) is matrix multiplication.

A subspace of A is asubalgebraof A if Sis itself an algebra under the same binary
operation {|-) . In particular,S must be closed under this operation; ixe),\)eS for
anyx, yin S We write:ScA.

A subalgebr&cA is anideal of A iff (x|y)eS and ¢ |x)eS, for anyxeS yeA.

Modules

Note first thatR is an associative, commutative algebra under shialwoperations of
addition and multiplication. Thus, a vector spaserdR is a vector space over an
associative, commutative algebra. More generalljpaaluleM over A is a vector
space over aassociativebut (generallynon-commutativelgebra. In particular, the
external operationonM is defined by

T AxM->M; ax=y (@eA; x,yeM).

Example:The collection of alh-dimensional column matrices, withtaken to be the
algebra ofnxn matrices, and with matrix multiplication as thee¥ral operation.

15



Vector fields
A vector fieldV onR" is a map from a domain & intoR":
ViR USSR [x= (.., xNeU] = V(X) = (VHK),... V") eR .

The vectorx represents a point id, with coordinates),..., x"). The functiond/'(x")
(i=1,...n) are thecomponentsf V in the coordinate systers).

Given two vector fielddJ andV, we can construct a new vector fisM=U+V such
that W(x)=U(x)+V(x). The components ofN are the sums of the respective
components of) andV.

Given a vector field/ and a constarsteR, we can construct a new vector figdldaV
such thafZ(x)= aV(x). The components & are scalar multiples (k@) of those ofv.

It follows from the above thadhe collection of all vector fields or'® a vector space
over R.

More generally, given a vector fieM and a functiorf eA%R"), we can construct a
new vector fieldZ= f V such thaZ(x)= f (x)V(x). Given thatA’%(R") is an associative
algebra, we conclude théte collection of all vector fields on"Rs a module over
A%R") (in this particular case, the algetY)R") is commutative).

A note on linear independence:

Let {V1,...,V} ={Va} be a collection of vector fields dR'".

(@) The set ¥4} is linearly dependent over Rinearly dependent with constant
coefficients) iff there exist real constants... ¢, not all zerq such that

ClVl(X)+...+CrVr(X):O, VXERl~I

If the above relation is satisfied only for; = ...= ¢, = 0, the set Y3} is linearly
independent over.R

(b) The set Y.} is linearly dependent ovex’(R") iff there exist functionsfy (X9), ...,
f, (X, not all identically zero oveR", such that

L )Vi() +... +E XYV, (X) =0, vx=(X)eR".

If this relation is satisfied only forf; (X)=...= f, (X) = 0, the set Y.} is linearly
independent ovex°(R").

There can be at most n elements in a linearly irddpnt system ova®(R"). These
elements form dasis{ey, ...,e}={ &} for the module of all vector fields oR". An
element of this module, i.e. an arbitrary vectaldiV, is written as a linear
combination of the d} with coefficientsV*e A%R"). Thus, at any point= (X)eR’,

16



V(X) = Vi) e + .. +V (XY en= (V) ... V(X)) .
In particular, in the basisaf},
er=(1,0,0....,0), &= (0,1,0....,0),... ,&=(0,0,...,0,1) .

Example:Let n=3, i.e.,R’=R>. Call {e1, &, &3} ={i, j, k}. Let VV be a vector field on
R®. Then, at any poink = (x, y, 2)eR’,

VX)) = V(X Y, 21 +Vy(X,¥,2) ] +V2(X Y, 2 Kk =(Vx, Vy, V).
Now, consider the six vector fields

V1= i , V2:j , V3= k, V4= Xj —yl , V5= yk—Zj , Vg= zi —xk.
Clearly, the ¥1, V2, V3} are linearly independent over’(R®), since they constitute
the basis {, j, k}. On the other hand, thé,, Vs, Ve are separately linearly dependent
on the {1, Vo, V3 } over A%R®). Moreover, the set\s, Vs, Vs } is also linearly
dependent oveN’(R®), since 2V + XVs + W = 0 . Thus, the set\f, ..., Vg} is
linearly dependent ovex°(R%). On the other hand, the system{..., Ve} is linearly
independent over ,Rsince the equationc;Vy; + ... + Vg = 0, with ¢ ,...CeR
(constant coefficients), can only be satisfied ¢ ...= cs= 0. In general,

there is an infinite number of linearly independeettor fields on Rover R,
but only n linearly independent fields ovaf(R").
Derivation on an algebra
Let L be an operation on an algel##&anoperatoronA):
L: A>A; (keA)>y=LxeA.

L is aderivationonAiff, Vx,y eAanda, b eR,

L (ax+by) = aL(x) + bL(y) (inearity)
Lx|y)=({Lx]y)+X]|LYy) Leibniz rulg

Example:Let A=A°(R)={ f (x\,...,X"}, and letL be the linear operator
L =" (X)a/oxt +... + " (X) dlox" = o' (X) BloX |

where they '(X) are given functions. As can be shown,
L [0 901 = [Lf (<] gix) + f (X)L gx) .

Hence L is a derivation od\°(R").
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Liealgebra

An algebral overR s a (real)Lie algebrawith binary operation-[, -]: LxL—L (Lie
bracke) iff this operation satisfies the properties:

[ax +by,Z =a[x,Z +b[y, 7

X,y =-[y,X] @ntisymmetry
X, [y, 41+ [y, [z, x]]+[z,[x,y]] =0 Jacobi identity

(wherex, y, z e £ anda, b eR). Note that, by the antisymmetry of the Lie brackiee
first and third properties are written, alternalyye

[x,ay+bz =a[x,y] +b[x, 7,
[[x.y1,4+[[y.Z.,x]+[[z,x],y]=0.
A Lie algebra is amon-associativalgebra, since, as follows by the above properties

[x,[y.2dl =[x, y].7.
Example:The algebra ofixn matrices, with A, B|I=AB-BA (commutator).

Example:The algebra of all vectors R, with [a,b] = ax b (vector product).

Liealgebra of derivations

Consider the algebraA\=A°(R")={ f (x,..., X")}. Consider also the s&(A) of linear
operators o, of the form

L=¢'(X)aloX (sumon=1,2,...,n).

These first-order differential operators aterivations on A (the Leibniz rule is
satisfied). Now, given two such operatbss L., we construct the linear operatarg
bracketof L; andL;), as follows:

[Li, L2] =Lila— LoLy

[L1, Lo] (&) = Ly (Lo f (X9) — Lo(Lyf(X) .
It can be shown that |, L,] is a first-order differential operator (a derivation), hence
is a member oD(A). (This isnot the case with second-order operators like,!)

Moreover, the Lie bracket of operators satisfiéshad properties of the Lie bracket of
a general Lie algebra (such as antisymmetry anobdadentity). It follows that

the set MA) of derivations om\%(R") is a Lie algebra, with binary operation
defined as the Lie bracket of operators.

18



Direct sum of subspaces
Let V be a vector space over a fikd (where K may beR or C), of dimension
dimV=n. LetS;, S bedisjoint (i.,e., § N $ ={0}) subspaces of. We say thaV is
thedirect sumof S, andS; if each vector oV can beuniquelyrepresented as the sum
of a vector ofS; and a vector 0% . We write:V= 5§ @ S . In terms of dimensions,
dimV=dim § +dim S, . We similarly define the vector sum of three sutgs ofV,

each of which is disjoint from the direct sum o thther two (i.e.5 N (SDS3)={ 0},
etc.).

Homomor phism of vector spaces

Let V, W be vector spaces over a fisdd A mappingd:V—W is said to be éinear
mappingor homomorphisnif it preserves linear operations, i.e.,

DO(x+y) =O(X) +d(y), Dkx)=kd(X), VX yeV andkeK.
A homomorphism which is aldmjective(1-1) is called ansomorphism

The set of vectorgeV mapping unde® into the zero oW is called thekernelof the
homomorphismb:

Kerd = {xeV:d(x) =0} .

Note that®(0)=0, for any homomorphism (clearly, the two zeros referditierent
vector spaces). Thus, in genefatKer®.

If Ker ® ={0}, then the homomorphisn® is also an isomorphism of onto a
subspace ofW. If, moreover, div=dimW, then the mapd:V->W is itself an

isomorphism In this case, Imd =W, where, in general, Imd (image of the
homomorphisinis the collection of images of all vectors\btinder the mag.

The algebra of linear operators

Let V be a vector space over a fiddd A linear operatorA onV is a homomorphism
A:V-V. Thus,

A(x+y) =AX) +A(Y), A(kx) =kA(X), VX, yeV andkeK.
The sumA+B and the scalar multiplicatidtA (keK) are linear operators defined by
(A+B)x=Ax+Bx , KA)x=Kk(AX) .

Under these operations, the €g¥V) of all linear operators oW is a vector space.
The zero element of that space is a zero opebatoch thatOx=0, VX V.
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SinceA andB are mappings, their composition may be defineds Thregarded as
their productAB:

(AB)x=A(BXx) , VxeV.
Note thatAB is a linear operator on Vhence belongs tOp(V). In general, operator
products are non-commutativeAB=BA. However, they areassociative and
distributive over addition:

(AB)C=A(BC)=ABC , A(B+C)=AB+AC .
The identity operatorE is the mapping oDp(V) which leaves every element wf
fixed: E x= x. Thus,AE=EA=A . Operators of the forrkE (keK), calledscalar
operators are commutative with all operators. In fact, apgrator commutative with

every operator oDp(V) is a scalar operator.

It follows from the above thahe set OfV) of all linear operators on a given vector
space V is an algebr& his algebra is associative but (generally) nomiaiutative.

An operatorA is said to benvertible if it represents &ijective (1-1) mapping, i.e., if
it is an isomorphism of onto itself. In this case, anverse operatoA ™ exists such

that AA'= A?A=E. Practically this means that, A mapsxeV ontoyeV, thenA™
mapsy back ontax. For an invertible operatd, KerA={0} and ImA=V.

Matrix representation of a linear operator
Let A be a linear operator on Let {e} (i=1,...,n) be a basis of. Let
Ae=¢eAix (sumoni)

where theAjy are real or complex, depending on whetiés a vector space overor
C. Thenxn matrix A=[A;] is called thematrix of the operatoA in the basi{e}.

Now, let x=x; & (sum oni) be a vector i/, and lety=A x. If y=vy; e, then, by the
linearity of A,

Vi =AikX% (sunonk) .

In matrix form,
[Ylnx1 = [Alnan [X]nx1

Next, let A, B be linear operators o Define their productC=AB by
Cx=(AB)x=A(Bx) , XxeV.

Then, for any basise}, Cexk=A(Be&)=€AijBjx=aCix =
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Cik=AijBj«
or, in matrix form,

C=AB.
That is,

the matrix of the product of two operators is theduct of the matrices of
these operators, in any basis of V.

Consider now a change of basis defined bytridmasition matrix T T;]:
& =eTik .
The inverse transformation is
a=a (T« .
Under this basis change, the matkinf an operatoA transforms as
A =TAT (similarity transformatiol .
Under basis transformatiortbe trace and the determinant of A remain unchanged
trA’=trA , detA =detA.
An operatorA is said to benonsingular(singulan if detA:0 (detA=0). Note that this
is a basis-independenproperty. Any nonsingular operator is invertible.e., there
exists an inverse operatdi *cOp(V) such thatA A~*= A™*A=E. Since an invertible
operator represents a bijective mapping (i.e., dbth and onto), it follows that
KerA={0} and ImA=V. If A is invertible (nonsingular), then, for any bas} {

(i=1,...,n) of V, the vectors Ae} are linearly independent and hence also constifut
basis.

I nvariant subspaces and eigenvectors
Let V be ann-dimensional vector space over a figldand letA be a linear operator
onV. The subspac8 of V is said to benvariant underA if, for every vectoix of S
the vectorAx again belongs t8. Symbolically AScS.

A vector x£0 is said to be arigenvectorof A if it generates a one-dimensional
invariant subspace &f underA. This means that an eleménrtK exists, such that

AX=1X .

The elementl is called areigenvalueof A, to which eigenvalue the eigenvector
belongs. Note that, trivially, the null vectdiis an eigenvector @&, belonging to any
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eigenvaluel. The set of all eigenvectors &f belonging to a given, is a subspace of
V called theproper subspace belonging io

It can be shown thdhe eigenvalues & are basis-independent quantitiésdeed, let
A=[Ai] be the (ixn) matrix representation & in some basisg} of V, and letx=x;g
be an eigenvector belongingtoWe denote bX=[x] the column vector representing
x in that basis. The eigenvalue equation&as written, in matrix form,

AXk=A% or AX=1AX.
This is written
(A-11,) X=0 .

This equation constitutes a linear homogeneousesydbr X=[x], which has a
nontrivial solution iff

det(A-21) =0 .

This polynomial equation determines the eigenvakuéis 1,...n) (not necessarily all
different from each-other) d&. Since the determinant of the matrix represemntatio
an operator [in particular, of the operat&—@¢E) for any givenl] is a basis-
independent quantity, it follows that, if the abaauation is satisfied for a certain
in a certain basis (wher is represented by the mat@y, it will also be satisfiedor
the samé in any other basis (whereis represented by another matrix, s&y). We
conclude thathe eigenvalues of an operator are a property efdperator itself and
do not depend on the choice of basis .of V

If we can find n linearly independent eigenvectorsi}{ of A, belonging to the
corresponding eigenvalugs, we can use these vectors to define a basig.for this
basis, the matrix representationfohas a particularly simpliagonalform:

A=diag(’1, ... ,4n) .

Using this expression, and the fact that the gtiastirA, detAand; are invariant
under basis transformations, we conclude thaniybasis ofV,

trA=A1+ A +...+4, , detA =11/5... 1, .

We note, in particular, thatl eigenvalues of an invertible (nonsingular) ogter are
nonzero Indeed, if even one is zero, théetA=0 andA is singular.

An operatorA is callednilpotentif A"=0 for some natural numben>1. The smallest
such value ofm is called thedegree of nilpotengyand it cannot exceed. All
eigenvalues of a nilpotent operator are zefus, such an operatorgsgular (non-
invertible).

An operatorA is calledidempotent(or projection operatoy if A*=A. It follows that

A™=A for any natural numben. The eigenvalues of an idempotent operator can take
the values O or.1
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BASIC MATRIX PROPERTIES

(A+B=A"+B"; (AB'=FB A
(A+B)'=A+B"; (AB'= B A where M'= (M )= (MY
kKA =kA ; (kA'=KA (k ¢
(AB)H=BIAY (A) 7 =(AY; (A =(A)'
[AB"=[B,Al; [AB'{E A

1

A_l = deTA\ ade (det A¢ O)

a b]" 1 [d -b
c d| ad-bc|-c a
tr(xA+AB) =« trA+ A trB
trAT =trA ;  trA = (trA)’

tr(AB) =tr(BA), tr(ABC)= tr(BCA= t( CAB, el
tr[A,B] =0

detA” = detA ; detd = (deA’)

det(AB)= detBA)X detA deB

det(A™)= 1/detA

detCA)=c" detA (ce C, Ae gl(n,C)

If any row or column of\ is multiplied byc, then so is deA.

[ABl=-[B A= AB- BA

[AB+C=[AB+H AC; [ A B4 .AICt ,BIC
[ABC=[ABC+t BACT;, [ ABIC= [AB]G , AC
[AIBAIHB[CAAL d ABD

[AB, gH[ B A CIA |BD

Let A= A(Y)=[a;(9], B= B }=[ b (), be @xn) matrices. The derivative
of A (similarly, of B) is the xn) matrixdA/dt , with elements

dA d
(al,- T

The integral oA (similarly, of B) is the (ixn) matrix defined by
(jA(t) olt)ij =[a;(9dt.
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O e A, 0B o dAL, a8
dt dt - dt ' dt dt dt
d dA dB
~[AB=— B 2B
ar A B [dt }{A dt}

d -1 71dA —1 1 1 1
— (A7) =—-A"—A d(A)=-A(dA A
Olt( ) ot = d(A) (dA
tr(d—Aj:E(trA)

dt dt

Let A= A(x Yy). Call oAl ox=0, A= A, etc.:
O (ATA) -0 (ATA)+[ ATA, A'A]=0
0 (A AN -0 (AAY-[AAY AAT=0
AATA) AT =(A A, & A(AR) AN A,

0 n 2
eAEeXpA:ZA_::H_ A+i+...

n=0 n! 2
Be'B'= &

(A) = (&) =€ (é)=&; (§'= ¢
eff= = &P when [ AB=0

In general, e*€® = & where

1 1
C-A+B+[AB+—(ALABH B BIN)+-

By definition, logB= A< B= €.

det(eA)z é”* < detB= &8 — t{r(logB)= log(detB)
det(+ 0A)= L+ troA , for infinitesimab A

tr (AMA ) =tr(A A" = tr(log A), = [tr(log A)] , = [log (det A)],

24



