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Foundations of Newtonian Dynamics:
An Axiomatic Approach for the Thinking Student*

C. J. Papachristou?

Department of Physical Sciences, Hellenic Navald&oay, Piraeus 18539, Greece

Abstract. Despite its apparent simplicity, Newtonian mechamontains conceptual
subtleties that may cause some confusion to thp-tiéeking student. These subtle-
ties concern fundamental issues such as, e.gautider of independent laws needed
to formulate the theory, or, the distinction betwgenuine physical laws and deriva-
tive theorems. This article attempts to clarifyshessues for the benefit of the stu-
dent by revisiting the foundations of Newtonian dgrics and by proposing a rigor-
ous axiomatic approach to the subject. This thaaiescheme is built upon two fun-
damental postulates, namely, conservation of maumnend superposition property
for interactions. Newton’s laws, as well as all fi@an theorems of mechanics, are
shown to follow from these basic principles.

1. Introduction

Teaching introductory mechanics can be a majorlemgd, especially in a class of
students that are not willing to take anything doanted! The problem is that, even
some of the most prestigious textbooks on the subyey leave the student with
some degree of confusion, which manifests itsetfuastions like the following:

e Is the law of inertia (Newton’s first law) a law ofotion (of free bodies) or is
it a statement of existence (of inertial referefmaenes)?

e Are the first two of Newton’s laws independent atk other? It appears that
the first law is redundant, being no more thaneci case of the second law!

e Is the second law a true law or a definition (ot&)?

e |Is the third law more fundamental than conservatibmomentum, or is it the
other way around?

e Does the “parallelogram rule” for composition ofdes follow trivially from
Newton’s laws, or is an additional, independemgiple required?

e And, finally, what is the minimum number ofdependentaws needed in or-
der to build a complete theoretical basis for maas?

In this article we describe an axiomatic @agh to introductory mechanics that is
both rigorous and pedagogical. It purports to flagsues like the ones mentioned
above, at an early stage of the learning procéss, @iding the student to acquire a
deep understanding of the basic ideas of the thédsynot the purpose of this article,
of course, to present an outline of a complete sswf mechanics! Rather, we will
focus on the most fundamental concepts and priesjfghose that are taught at the
early chapters of dynamics (we will not be concdmh kinematics, since this sub-
ject confines itself to a description of motionhat than investigating the physical
laws governing this motion).

! See Note at the end of the article.
2 papachristou@snd.edu.gr
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The axiomatic basis of our approach consittsvo fundamental postulates, pre-
sented in Section 3. The first postulaRl)(embodies both the existenceioértial
reference frameand theconservation of momentywhile the second oné’®) ex-
presses auperposition principldor interactions Thelaw of inertiais deduced from
Pl

In Sec. 4, the conceptfoirce on a particle subject to interactions is definasli
Newton’s second lamandP2is used to show that a composite interaction dréicle
with others is represented by a vector sum of grédenP1 andP2 are used to de-
rive theaction-reaction lawFinally, a generalization to systems of partidabject to
external interactions is made.

For completeness of presentation, certainvaere concepts such as angular
momentum, work, kinetic energy, etc., are discuseefiec. 5. To make the article
self-contained, proofs of all theorems are included

2. A critical look at Newton'’s theory

There have been several attempts to reexamine N&nBws even since Newton’s
time. Probably the most important revision of New$adeas — and the one on which
modern mechanics teaching is based — is that déenst Mach (1838-1916) (for a
beautiful discussion of Mach’s ideas, see the mamsicle by H. A. Simon [1]). Our
approach differs in several aspects from those atiMand Simon, although all these
approaches share common characteristics in sfot. a historical overview of the
various viewpoints regarding the theoretical ba$islassical mechanics, see, e.g., the
first chapter of [2].)

The question of thendependencef Newton’s laws has troubled many genera-
tions of physicists. In particular, still on thiaydsome authors assert that the first law
(the law of inertia) is but a special case of tkeosid law. The argument goes as fol-
lows:

“According to the second law, the acceleration gfaaticle is proportional to
the total force acting on it. Now, in the case dfee particle the total force
on it is zero. Thus, a free particle must not beeterating, i.e., its velocity
must be constant. But, this is precisely what éwedf inertia says!”

Where is the error in this line of reasonidg®wer: The error rests in regarding
the acceleration as an absolute quantity indeperafehe observer that measures it.
As we well know, this is not the case. In particutae only observegntitledto con-
clude that a non-accelerating object is subjectamet force is amertial observey
one who uses amertial frame of referencéor his/her measurements. It is precisely
the law of inertia thatlefinesinertial frames anduaranteegheir existence. So, with-
out the first law, the second law becomes indeteaitei, if not altogether wrong, since
it would appear to be valid relative to any obsemegardless of his/her state of mo-
tion. It may be said that the first law defines therrain” within which the second
law acquires a meaning. Applying the latter lawhwiit taking the former one into
account would be like trying to play soccer withpossessing a soccer field!

The completeness of Newton’s laws is anoigsre. Let us see a significant ex-
ample: As is well known, thprinciple of conservation of momentusna direct con-
sequence of Newton’s laws. This principle dictated the total momentum of a sys-
tem of particles is constant in time, relative toirertial frame of reference, when the
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total external force on the system vanishes (iniqdar, this is true for amsolated
system of particles, i.e., a system subject to xtereal forces). But, when proving
this principle we take it for granted that the tdtace on each particle is the vector
sum of all forces (both internal and external) ragton it. This isnot something that
follows trivially from Newton’s laws, however! Imatt, it was Daniel Bernoulli who
first stated thigrinciple of superpositiomafter Newton’s death. This means that clas-
sical Newtonian mechanics is built upon a totdloofr — rather than just three — basic
laws.

The question now is: can we somehow “comfyéddtie axiomatic basis of New-
tonian mechanics in order for it to consist of aaen number of independent princi-
ples? At this point it is worth taking a closer koat the principle of conservation of
momentum mentioned above. In particular, we natfdhowing:

e For an isolated “system” consisting of a singletipk, conservation of mo-
mentum reduces to the law of inertia (the momentilnms also the velocity,
of a free particle is constant relative to an ilaftame of reference).

e For an isolated system of two particles, conseswatif momentum takes us
back to the action-reaction law (Newton’s third Jaw

Thus, starting with four fundamental lawse(three laws of Newton plus the law
of superposition) we derived a new principle (conagon of momentum) that yields,
as special cases, two of the laws we started Wiib.idea is then that, by takitigs
principle as our fundamental physical law, the namtf independent laws necessary
for building the theory would be reduced.

How about Newton’s second law? We take tlevyiadopted by several authors
including Mach himself (see, e.g., [1,3-7]) thastaw” should be interpreted as the
definition of force in terms of the rate of change of momentu

We thus end up with a theory built ugaro fundamental principles, i.e., the con-
servation of momentum and the principle of supatjos In the following sections
these ideas are presented in more detail.

3. The fundamental postulates and their consequees
We begin with some basic definitions.

Definition 1. A frame of referencéor reference framgis a system of coordinates
(or axes) used by an observer to measure physiealtifjes such as the position, the
velocity, the acceleration, etc., of any particiespace. The position of the observer
him/herself is assumdtkedrelative to his/her own frame of reference.

Definition 2. An isolated system of particles a system of particles subject only
to their mutual interactions, i.e., subject to exiernal interactions. Any system of
particles subject to external interactions that eloowv cancel one another in order to
make the system’s motion identical to that of aated system will also be consid-
ered “isolated”. In particular, an isolated systeonsisting of a single patrticle is
called afree patrticle

Our first fundamental postulate of mechamscstated as follows:
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Postulate 1. A class of frames of referencedrtial frameg exists such that, for
anyisolatedsystem of particles, a vector equation of theofelihg form is valid:

Z m ¥ = constant in tim (1)

where V; is the velocity of the particle indexed byi=1,2,--) and wherem is a

constant quantity associated with this particlejciwiguantity is independent of the
number or the nature of interactions the partglsubject to.

We callm themassand p. =m Yy themomentunof theith particle. Also, we call

P=2my=>"% ) (2

thetotal momentunof the system relative to the considered referéracee. Postulate
1, then, expresses tpeinciple of conservation of momentuthe total momentum of
an isolated system of particles, relative to antialereference frame, is constant in
time. (The same is true, in particular, for a fpaeticle.)

Corollary 1. A free particle moves with constant velocity (i.@ith no accelera-
tion) relative to annertial reference frame.

Corollary 2. Any two free particles move with constant velastrelative to each
other (their relative velocity is constant and threlative acceleration is zero).

Corollary 3. The position of a free particle may define thegioriof an inertial
frame of reference.

We note that Corollaries 1 and 2 constitltieriaate expressions of tihew of in-
ertia (Newton'’s first law.

Byinertial observerwe mean an “intelligent” free particle, i.e., aat can per-
form measurements of physical quantities such decig or acceleration. By
convention, the observer is assumed to be locatdearigin of his/her own inertial
frame of reference.

Corollary 4. Inertial observers move with constant velocities.(they do not ac-
celerate) relative to one another.

Consider now an isolated system of two pl@siof massesn, andm,. Assume

that the particles are allowed to interact for samme intervaldt. By conservation of
momentum relative to an inertial frame of referenwee have:

AB+P)=0 = Ap=-4p, = mAY=— ma7y.

We note that the changes in the velocities of we particles within the (arbitrary)
time intervaldt must be in opposite directions, a fact that isfieel experimentally.
Moreover, these changes are independent of thécydart inertial frame used to
measure the velocities (although, of course, thiecitees themselvesre frame-
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dependent!). This latter statement is a consequehtiee constancy of the relative
velocity of any two inertial observers (the studesninvited to explain this in detail).
Now, taking magnitudes in the above vector equatienhave:

|AY1| _Me constan 3)
|av,|  my

regardless of the kind of interaction or the tifte(which also is an experimentally
verified fact). These demonstrate, in practice vagity of the first postulate. Equa-
tion (3) allows us to specify the mass of a pagtimimerically, relative to the mass of
some other particle (which particle may arbitrakiy assigned a unit mass), by letting
the two particles interact for some time. As argabdve, the result will be independ-
ent of the specific inertial frame used by the obsewho makes the measurements.
That is, in the classical theomass is a frame-independent quantity

So far we have examined the case of isolsgstbms and, in particular, free parti-
cles. Consider now a particle subject to interatiwith the rest of the world. Then,
in general (unless these interactions somehow taneeanother), the particle’s mo-
mentum will not remain constant relative toiaartial reference frame, i.e., will be a
function of time. Our second postulate, which egpes thesuperposition principle
for interactions asserts that external interactions act on agbaitidependently of
one anotheand their effects are superimposed.

Postulate 2. If a particle of masan is subject to interactions with particles
m,, m,,---, then, at each instaptthe rate of change of this particle’s momentuta-re

tive to an inertial reference frame is equal to
dp dp
—r_ Bl 4
-2l @

Where(d p/ dt)i Is the rate of change of the particle’s momentwa dolely to the
interaction of this particle with the partictg (i.e., the rate of change ¢ if the par-
ticle minteractedbnly with m ).

4. The concept of force and the Third Law
We nowdefinethe concept of force, in a manner similaN@wton’s second law

Definition 3. Consider a particle of mass that is subject to interactions. Let
p(t) be the particle’s momentum as a function of tim®,measured relative to an

inertial reference frame. The vector quantity

d

o]

F= (5)

o

t

is called theotal forceacting on the particle at tinte
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Taking into account that, for a single pagtico = mv with fixed m, we may re-
write EQ. (5) in the equivalent form,

—

F=ma=

T
— | <l

(6)

where a is the particle’s acceleration at tiheGiven that both the mass and the ac-
celeration (prove this!) are independent of thetiakframe used to measure them, we
conclude thathe total force on a particle is a frame-independgmantity

Corollary 5. Consider a particle of mass subject to interactions with particles
m,, m,---. Let F be the total force om at timet, and letF. be the force om due
solely to its interaction withm . Then, by the superposition principle for interawas
(Postulate 2) as expressed by Eq. (4), we have:

F=2F Y

Theorem 1. Consider two particles and2. Let F,, be the force on particte due

to its interaction with particl@ at timet, and letF,, be the force on partict due to
its interaction with particlé at the same instant. Then,

—

l:12 == 'le (8)

Proof. By the independence of interactions, as exprebsethe superposition
principle, the forces,, and F,, are independent of the presence or not of othei pa

cles in interaction with particlesand2. Thus, without loss of generality, we may as-
sume that the system of the two particles is iedlaifhen, by conservation of mo-
mentum and by using Eq. (5),

d . dp df - =
a(pﬁr p)=0 = d_%:_TF?[Z = Fy=—Fy .

Equation (8) expresses thetion-reaction law(Newton’s third lavy.

Theorem 2. The rate of change of the total moment@tt) of a system of parti-

cles, relative to an inertial frame of referenapads the totaéxternalforce acting on
the system at time

Proof. Consider a system of particles of massg$i=1,2,--). Let F. be the total
externalforce onm (due to its interactions with particle®t belongingto the sys-

tem), and Ietlf”- be theinternal force onm due to its interaction witim, (by con-

—

vention, F; =0 wheni=j). Then, by Eq. (5) and by taking into account &9,
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dp - B,
S _FE+YE, .
dat ; !

By using Eqg. (2) for the total momentum, we have:

dP_$dA_vE,.TE
Py yeTe.
But,
- L le. -
Z':ij:ZFjiZEZ(FuJFFﬁ):O'
ij ji

ij
where the action-reaction law (8) has been takenaocount. So, finally,

P - -
E:ZE:Fext (9)

where F,

ext

represents thtal external forceon the system.

5. Derivative concepts and theorems

Having presented the most fundamental conceptsechanics, we now turn to some
useful derivative concepts and related theorend) as those of angular momentum
and its relation to torque, work and its relatienkinetic energy, and conservative
force fields and their association with mechanaargy conservation.

Definition 4. Let O be the origin of amnertial reference frame, and |&€t be the
position vector of a particle of mass relative toO. The vector quantity

[=Fxp=m(FxV) oj1

(where p=mvV is the particle’s momentum in the considered fraimealled thean-
gular momentunof the particle relative t@.

Theorem 3. The rate of change of the angular momentum ofrticieg relative to
O, is given by

—=rxF =T (11)
where F is thetotal force on the particle at tinteand whereT is thetorqueof this
force relative tdO, at this instant.

Proof. Equation (11) is easily proven by differentiatiig. (10) with respect to
time and by using Eq. (5).
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Corollary 6. If the torque of the total force on a particldatee to some poinD,
vanishes, then the angular momentum of the pamatéive toO is constant in time
(principle of conservation of angular momenjum

Under appropriate conditions, the above cmas®n principle can be extended to
the more general case of a system of particles ¢sge [2-8]).

Definition 5. Consider a particle of massin aforce field F(F), wheref is the

particle’s position vector relative to the origihof an inertial reference frame. L&t
be a curve representing the trajectory of the garfrom pointA to pointB in this
field. Then, the line integral

W,g = jf E(F). dF o

represents thevork done by the force field om along the patl€. (Note: This defini-
tion is valid independently of whether or not adbhtl forces, not related to the field,

are acting on the particle; i.e., regardless ofttdeor notF (F) represents the total
force onm.)

Theorem 4. Let F(F) represent théotal force on a particle of mass in a force
field. Then, the work done on the particle alonzpehC from A to B is equal to

Bﬁ — —
Wy =[, F(7)-df = Ecg— Exa= 4E, (13)
where

(14)

is thekinetic energyof the particle.
Proof. By using Eq. (6), we have:

E.dr=md

<l

dr=my dve s mEv =S mey= mvg

o
—

from which Eq. (13) follows immediately.

Definition 6. A force field F(F) is said to beconservativef a scalar function
E,(F) (potential energyexists, such that the work on a particle alangpath from
A to B can be written as

Bﬁ — —
Wy =[, F(7)-df = E, ;- E 5=—4E (15)

p
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Theorem 5. If the total forceF (F) acting on a particlen is conservative, with an
associated potential ener@y, (r) , then the quantity

E:Ek+Ep:%m\?+ (7 (16)

(total mechanical energygf the particle) remains constant along any pedhed by
the particle ¢onservation of mechanical enejgy

Proof. By combining Eq. (13) (which is generally valid finy kind of force) with
Eq. (15) (which is valid foconservativdorce fields) we find:

AR =-4E, = A(E+ E)=0 = E+ E,= cons

Theorems 4 and 5 are readily extended tac#se of a system of particles (see,
e.g., [2-8]).

6. Some conceptual problems

After establishing our axiomatic basis and demattisty that the standard Newtonian
laws are consistent with it, the development ofrést of mechanics follows familiar
paths. Thus, as we saw in the previous sectiorgamedefine concepts such as angu-
lar momentum, work, kinetic and total mechanicargres, etc., and we can state de-
rivative theorems such as conservation of angulamentum, conservation of me-
chanical energy, etc. Also, rigid bodies and cardirs media can be treated in the
usual way [2-8] as systems containing an arbitrdailge number of particles.

Despite the more “economical” axiomatic basisNewtonian mechanics sug-
gested here, however, certain problems inheretitarclassical theory remain. Let us
point out a few:

1. The problem of “inertial frames”

An inertial frame of reference is only a tretecal abstraction: such a frame can-
not exist in reality. As follows from the discussim Sec. 3, the origin (saf) of an
inertial frame coincides with the position of a btipetical free particle and, more-
over, any real free particle moves with constanbaity relative toO. However, no
such thing as an absolutely free particle may arighe world. In the first place,
every material particle is subject to the infintédng-range gravitational interaction
with the rest of the world. Furthermore, in order & supposedly inertial observer to
measure the velocity of a “free” particle and wettiat this particle is not accelerat-
ing relative to him/her, the observer must somel@eract with the particle. Thus,
no matter how weak this interaction may be, theigarcannot be considered free in
the course of the observation.

2. The problem of simultaneity

In Sec. 4 we used our two postulates, togetitd the definition of force, to de-
rive the action-reaction law. Implicit in our argants was the requirement that action
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must besimultaneouswith reaction. As is well known, this hypothesmhich sug-
gests instantaneous action at a distance, ignioecknite speed of propagation of the
field associated with the interaction and violatagsality.

3. A dimensionless “observer”

As we have used this concept, an “obsengdni intelligent free particle capable
of making measurements of physical quantities sischelocity or acceleration. Such
an observer may use any convenient (preferablyamgalar) set of axes
(%, ¥, 2) for his/her measurements. Different systems @samsed by this observer
have different orientations in space. By conventtbe observer is located at the ori-
gin O of the chosen system of axes.

As we know, inertial observers do not acakerelative to one another. Thus, the
relative velocity of the origins (sa@) andQ’) of two different inertial frames of ref-
erence is constant in time. But, what if the axethese frames are ielative rota-
tion (although the origin® and O" move uniformly relative to each other, or even
coincide)? How can we tell which observer (if arsyan inertial one?

The answer is that, relative to the systeraxals of an inertial frame, a free parti-
cle does not accelerate. In particular, relativa totating frame, a free particle will
appear to possess at least a centripetal acceler&tiich a frame, therefore, cannot be
inertial.

As mentioned previously, an object with #ndimensions (e.g., a rigid body) can
be treated as an arbitrarily large system of dagidNo additional postulates are thus
needed in order to study the dynamics of such gectbrhis allows us to regard
momentum and its conservation as more fundamedrdal angular momentum and its
conservation, respectively. In this regard, ourrapph differs significantly from,
e.g., that of Simon [1] who, in his own treatmealces the aforementioned two con-
servation laws on an equal footing from the outset.

7. Summary

Newtonian mechanics is the first subject in Physicsundergraduate student is ex-
posed to. It continues to be important even atintermediate and advanced levels,
despite the predominant role played there by theengeneral formulations of La-
grangian and Hamiltonian dynamics.

It is this author's experience as a teachet, tdespite its apparent simplicity,
Newtonian mechanics contains certain conceptudletids that may leave the deep-
thinking student with some degree of confusion. @kerage student, of course, is
happy with the idea that the whole theory is budon three rather simple laws attrib-
uted to Newton’s genius. In the mind of the morendeding student, however, puz-
zling questions often arise, such as, e.g., howynraaependent laws we really need
to fully formulate the theory, or, which ones shibbke regarded as truly fundamental
laws of Nature, as opposed to others that can fieedeas theorems.

This article suggested an axiomatic apprdadhtroductory mechanics, based on
two fundamental, empirically verifiable laws; nameheprinciple of conservation of
momentumand theprinciple of superposition for interaction¥Ve showed that all
standard ideas of mechanics (including, of coukmyton’s laws) naturally follow
from these basic principles. To make our formulai&s economical as possible, we
expressed the first principle in terms of a systdnparticles and treated the single-
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particle situation as a special case. To makeriweaself-contained for the benefit of
the student, explicit proofs of all theorems werkeg.

By no means do we assert, of course, thatghrticular approach is unique or
pedagogically superior to other established methbds adopt different viewpoints
regarding the axiomatic basis of classical mectsarboreover, as noted in Sec. 6,
this approach is not devoid of the usual theorkpecablems inherent in Newtonian
mechanics (see also [9,10]).

In any case, it looks like classical mechamamains a subject open to discussion
and re-interpretation, and more can always be aaadit things that are usually taken
for granted by most students (this is not exclugitieeir fault, of course!). Happily,
some of my own students do not fall into this catggl appreciate the hard time they
enjoy giving me in class!
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