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Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual 
subtleties that may cause some confusion to the deep-thinking student. These subtle-
ties concern fundamental issues such as, e.g., the number of independent laws needed 
to formulate the theory, or, the distinction between genuine physical laws and deriva-
tive theorems. This article attempts to clarify these issues for the benefit of the stu-
dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor-
ous axiomatic approach to the subject. This theoretical scheme is built upon two fun-
damental postulates, namely, conservation of momentum and superposition property 
for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are 
shown to follow from these basic principles.  

 
 
1.  Introduction  
 
Teaching introductory mechanics can be a major challenge, especially in a class of 
students that are not willing to take anything for granted! The problem is that, even 
some of the most prestigious textbooks on the subject may leave the student with 
some degree of confusion, which manifests itself in questions like the following:  
 

• Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is 
it a statement of existence (of inertial reference frames)?  

• Are the first two of Newton’s laws independent of each other? It appears that 
the first law is redundant, being no more than a special case of the second law!  

• Is the second law a true law or a definition (of force)?  
• Is the third law more fundamental than conservation of momentum, or is it the 

other way around?  
• Does the “parallelogram rule” for composition of forces follow trivially from 

Newton’s laws, or is an additional, independent principle required?  
• And, finally, what is the minimum number of independent laws needed in or-

der to build a complete theoretical basis for mechanics?  
 
      In this article we describe an axiomatic approach to introductory mechanics that is 
both rigorous and pedagogical. It purports to clarify issues like the ones mentioned 
above, at an early stage of the learning process, thus aiding the student to acquire a 
deep understanding of the basic ideas of the theory. It is not the purpose of this article, 
of course, to present an outline of a complete course of mechanics! Rather, we will 
focus on the most fundamental concepts and principles, those that are taught at the 
early chapters of dynamics (we will not be concerned with kinematics, since this sub-
ject confines itself to a description of motion rather than investigating the physical 
laws governing this motion).  
                                                 
1  See Note at the end of the article.  
2  papachristou@snd.edu.gr  



2  C. J. Papachristou 

      The axiomatic basis of our approach consists of two fundamental postulates, pre-
sented in Section 3. The first postulate (P1) embodies both the existence of inertial 
reference frames and the conservation of momentum, while the second one (P2) ex-
presses a superposition principle for interactions. The law of inertia is deduced from 
P1.  
      In Sec. 4, the concept of force on a particle subject to interactions is defined (as in 
Newton’s second law) and P2 is used to show that a composite interaction of a particle 
with others is represented by a vector sum of forces. Then, P1 and P2 are used to de-
rive the action-reaction law. Finally, a generalization to systems of particles subject to 
external interactions is made.  
      For completeness of presentation, certain derivative concepts such as angular 
momentum, work, kinetic energy, etc., are discussed in Sec. 5. To make the article 
self-contained, proofs of all theorems are included.  
 
 
2.  A critical look at Newton’s theory  
 
There have been several attempts to reexamine Newton’s laws even since Newton’s 
time. Probably the most important revision of Newton’s ideas – and the one on which 
modern mechanics teaching is based – is that due to Ernst Mach (1838-1916) (for a 
beautiful discussion of Mach’s ideas, see the classic article by H. A. Simon [1]). Our 
approach differs in several aspects from those of Mach and Simon, although all these 
approaches share common characteristics in spirit. (For a historical overview of the 
various viewpoints regarding the theoretical basis of classical mechanics, see, e.g., the 
first chapter of [2].)  
      The question of the independence of Newton’s laws has troubled many genera-
tions of physicists. In particular, still on this day some authors assert that the first law 
(the law of inertia) is but a special case of the second law. The argument goes as fol-
lows:  
 

“According to the second law, the acceleration of a particle is proportional to 
the total force acting on it. Now, in the case of a free particle the total force 
on it is zero. Thus, a free particle must not be accelerating, i.e., its velocity 
must be constant. But, this is precisely what the law of inertia says!”  

 
      Where is the error in this line of reasoning? Answer: The error rests in regarding 
the acceleration as an absolute quantity independent of the observer that measures it. 
As we well know, this is not the case. In particular, the only observer entitled to con-
clude that a non-accelerating object is subject to no net force is an inertial observer, 
one who uses an inertial frame of reference for his/her measurements. It is precisely 
the law of inertia that defines inertial frames and guarantees their existence. So, with-
out the first law, the second law becomes indeterminate, if not altogether wrong, since 
it would appear to be valid relative to any observer regardless of his/her state of mo-
tion. It may be said that the first law defines the “terrain” within which the second 
law acquires a meaning. Applying the latter law without taking the former one into 
account would be like trying to play soccer without possessing a soccer field!  
      The completeness of Newton’s laws is another issue. Let us see a significant ex-
ample: As is well known, the principle of conservation of momentum is a direct con-
sequence of Newton’s laws. This principle dictates that the total momentum of a sys-
tem of particles is constant in time, relative to an inertial frame of reference, when the 
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total external force on the system vanishes (in particular, this is true for an isolated 
system of particles, i.e., a system subject to no external forces). But, when proving 
this principle we take it for granted that the total force on each particle is the vector 
sum of all forces (both internal and external) acting on it. This is not something that 
follows trivially from Newton’s laws, however! In fact, it was Daniel Bernoulli who 
first stated this principle of superposition after Newton’s death. This means that clas-
sical Newtonian mechanics is built upon a total of four – rather than just three – basic 
laws.  
      The question now is: can we somehow “compactify” the axiomatic basis of New-
tonian mechanics in order for it to consist of a smaller number of independent princi-
ples? At this point it is worth taking a closer look at the principle of conservation of 
momentum mentioned above. In particular, we note the following:  
 

• For an isolated “system” consisting of a single particle, conservation of mo-
mentum reduces to the law of inertia (the momentum, thus also the velocity, 
of a free particle is constant relative to an inertial frame of reference).  

• For an isolated system of two particles, conservation of momentum takes us 
back to the action-reaction law (Newton’s third law).  

 
      Thus, starting with four fundamental laws (the three laws of Newton plus the law 
of superposition) we derived a new principle (conservation of momentum) that yields, 
as special cases, two of the laws we started with. The idea is then that, by taking this 
principle as our fundamental physical law, the number of independent laws necessary 
for building the theory would be reduced.  
      How about Newton’s second law? We take the view, adopted by several authors 
including Mach himself (see, e.g., [1,3-7]) that this “law” should be interpreted as the 
definition of force in terms of the rate of change of momentum.  
      We thus end up with a theory built upon two fundamental principles, i.e., the con-
servation of momentum and the principle of superposition. In the following sections 
these ideas are presented in more detail.  
 
 
3.  The fundamental postulates and their consequences  
 
We begin with some basic definitions.  
 
      Definition 1. A frame of reference (or reference frame) is a system of coordinates 
(or axes) used by an observer to measure physical quantities such as the position, the 
velocity, the acceleration, etc., of any particle in space. The position of the observer 
him/herself is assumed fixed relative to his/her own frame of reference.  
 
      Definition 2. An isolated system of particles is a system of particles subject only 
to their mutual interactions, i.e., subject to no external interactions. Any system of 
particles subject to external interactions that somehow cancel one another in order to 
make the system’s motion identical to that of an isolated system will also be consid-
ered “isolated”. In particular, an isolated system consisting of a single particle is 
called a free particle.  
 
      Our first fundamental postulate of mechanics is stated as follows:  
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      Postulate 1. A class of frames of reference (inertial frames) exists such that, for 
any isolated system of particles, a vector equation of the following form is valid:  
 

        constant in timei i
i

m v =∑ �

                                             (1) 

 
where iv

�

 is the velocity of the particle indexed by i ( 1,2,i = ⋯ ) and where im  is a 

constant quantity associated with this particle, which quantity is independent of the 
number or the nature of interactions the particle is subject to.  
 
      We call im  the mass and i i ip m v=

� �

 the momentum of the ith particle. Also, we call  

 

         i i i
i i

P m v p= =∑ ∑
�

� �

                                                 (2) 

 
the total momentum of the system relative to the considered reference frame. Postulate 
1, then, expresses the principle of conservation of momentum: the total momentum of 
an isolated system of particles, relative to an inertial reference frame, is constant in 
time. (The same is true, in particular, for a free particle.)  
 
      Corollary 1. A free particle moves with constant velocity (i.e., with no accelera-
tion) relative to an inertial reference frame.  
 
      Corollary 2. Any two free particles move with constant velocities relative to each 
other (their relative velocity is constant and their relative acceleration is zero).  
 
      Corollary 3. The position of a free particle may define the origin of an inertial 
frame of reference.  
 
      We note that Corollaries 1 and 2 constitute alternate expressions of the law of in-
ertia (Newton’s first law).  
      By inertial observer we mean an “intelligent” free particle, i.e., one that can per-
form measurements of physical quantities such as velocity or acceleration. By 
convention, the observer is assumed to be located at the origin of his/her own inertial 
frame of reference.  
 
      Corollary 4. Inertial observers move with constant velocities (i.e., they do not ac-
celerate) relative to one another.  
 
      Consider now an isolated system of two particles of masses 1 2andm m . Assume 

that the particles are allowed to interact for some time interval ∆t. By conservation of 
momentum relative to an inertial frame of reference, we have:  
 
                   1 2 1 2 1 1 2 2( ) 0p p p p m v m v∆ ∆ ∆ ∆ ∆+ = ⇒ = − ⇒ = −

� � � � � �

 .   

 
We note that the changes in the velocities of the two particles within the (arbitrary) 
time interval ∆t must be in opposite directions, a fact that is verified experimentally. 
Moreover, these changes are independent of the particular inertial frame used to 
measure the velocities (although, of course, the velocities themselves are frame-
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dependent!). This latter statement is a consequence of the constancy of the relative 
velocity of any two inertial observers (the student is invited to explain this in detail). 
Now, taking magnitudes in the above vector equation, we have:  
 

           21

2 1

constant
mv

v m

∆
∆

= =
�

�                                              (3) 

 
regardless of the kind of interaction or the time ∆t (which also is an experimentally 
verified fact). These demonstrate, in practice, the validity of the first postulate. Equa-
tion (3) allows us to specify the mass of a particle numerically, relative to the mass of 
some other particle (which particle may arbitrarily be assigned a unit mass), by letting 
the two particles interact for some time. As argued above, the result will be independ-
ent of the specific inertial frame used by the observer who makes the measurements. 
That is, in the classical theory, mass is a frame-independent quantity.  
      So far we have examined the case of isolated systems and, in particular, free parti-
cles. Consider now a particle subject to interactions with the rest of the world. Then, 
in general (unless these interactions somehow cancel one another), the particle’s mo-
mentum will not remain constant relative to an inertial reference frame, i.e., will be a 
function of time. Our second postulate, which expresses the superposition principle 
for interactions, asserts that external interactions act on a particle independently of 
one another and their effects are superimposed.  
 
      Postulate 2. If a particle of mass m is subject to interactions with particles 

1 2, ,m m ⋯ , then, at each instant t, the rate of change of this particle’s momentum rela-

tive to an inertial reference frame is equal to  
 

     
i i

d p d p

dt dt

 
=  

 
∑

� �

                                                       (4) 

 
where ( )/

i
d p dt
�

 is the rate of change of the particle’s momentum due solely to the 

interaction of this particle with the particle im  (i.e., the rate of change of p
�

 if the par-

ticle m interacted only with im ).  

 
 
4.  The concept of force and the Third Law  
 
We now define the concept of force, in a manner similar to Newton’s second law:  
 
      Definition 3. Consider a particle of mass m that is subject to interactions. Let 

( )p t
�

 be the particle’s momentum as a function of time, as measured relative to an 
inertial reference frame. The vector quantity  
 

          
d p

F
dt

=
�

�

                                                             (5) 

 
is called the total force acting on the particle at time t.  
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      Taking into account that, for a single particle, p mv=
� �

 with fixed m, we may re-
write Eq. (5) in the equivalent form,  
 

        
dv

F ma m
dt

= =
�

�
�

                                                       (6) 

 
where a

�

 is the particle’s acceleration at time t. Given that both the mass and the ac-
celeration (prove this!) are independent of the inertial frame used to measure them, we 
conclude that the total force on a particle is a frame-independent quantity.  
 
      Corollary 5. Consider a particle of mass m subject to interactions with particles 

1 2, ,m m ⋯ . Let F
�

 be the total force on m at time t, and let iF
�

 be the force on m due 

solely to its interaction with im . Then, by the superposition principle for interactions 

(Postulate 2) as expressed by Eq. (4), we have:  
 

        i
i

F F= ∑
� �

                                                              (7) 

 

      Theorem 1. Consider two particles 1 and 2. Let 12F
�

 be the force on particle 1 due 

to its interaction with particle 2 at time t, and let 21F
�

 be the force on particle 2 due to 

its interaction with particle 1 at the same instant. Then,  
 

      12 21F F= −
� �

                                                             (8) 
 
      Proof. By the independence of interactions, as expressed by the superposition 

principle, the forces 12F
�

 and 21F
�

 are independent of the presence or not of other parti-

cles in interaction with particles 1 and 2. Thus, without loss of generality, we may as-
sume that the system of the two particles is isolated. Then, by conservation of mo-
mentum and by using Eq. (5),  
 

                      ( ) 1 2
1 2 12 210

d p d pd
p p F F

dt dt dt
+ = ⇒ = − ⇒ = −

� �
� �

� �

 .   

 
Equation (8) expresses the action-reaction law (Newton’s third law).  
 

      Theorem 2. The rate of change of the total momentum ( )P t
�

 of a system of parti-
cles, relative to an inertial frame of reference, equals the total external force acting on 
the system at time t.  
 

      Proof. Consider a system of particles of masses ( 1,2, )im i = ⋯ . Let iF
�

 be the total 

external force on im  (due to its interactions with particles not belonging to the sys-

tem), and let i jF
�

 be the internal force on im  due to its interaction with jm  (by con-

vention, 0i jF =
�

 when i=j ). Then, by Eq. (5) and by taking into account Eq. (7),  
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                                                     i
i i j

j

d p
F F

dt
= + ∑

�
� �

.   

 
By using Eq. (2) for the total momentum, we have:  
 

                                          i
i i j

i i i j

d pdP
F F

dt dt
= = +∑ ∑ ∑
�

�
� �

.   

But,  

                                   ( )1
0

2i j ji i j ji
i j j i i j

F F F F= = + =∑ ∑ ∑
� � � �

,    

 
where the action-reaction law (8) has been taken into account. So, finally,  
 

         i ext
i

dP
F F

dt
= =∑
�

� �

                                                      (9) 

 

where extF
�

 represents the total external force on the system.  
 
 
5.  Derivative concepts and theorems  
 
Having presented the most fundamental concepts of mechanics, we now turn to some 
useful derivative concepts and related theorems, such as those of angular momentum 
and its relation to torque, work and its relation to kinetic energy, and conservative 
force fields and their association with mechanical-energy conservation.  
 
      Definition 4. Let O be the origin of an inertial reference frame, and let r

�

 be the 
position vector of a particle of mass m, relative to O. The vector quantity  
 

      ( )L r p m r v= × = ×
�
� � � �

                                                 (10) 

 
(where p mv=

� �

 is the particle’s momentum in the considered frame) is called the an-
gular momentum of the particle relative to O.  
 
      Theorem 3. The rate of change of the angular momentum of a particle, relative to 
O, is given by  
 

       
dL

r F T
dt

= × ≡

�

� �
�

                                                    (11) 

 
where F

�

 is the total force on the particle at time t and where T
�

 is the torque of this 
force relative to O, at this instant.  
 
      Proof. Equation (11) is easily proven by differentiating Eq. (10) with respect to 
time and by using Eq. (5).  
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      Corollary 6. If the torque of the total force on a particle, relative to some point O, 
vanishes, then the angular momentum of the particle relative to O is constant in time 
(principle of conservation of angular momentum).  
 
      Under appropriate conditions, the above conservation principle can be extended to 
the more general case of a system of particles (see, e.g., [2-8]).  
 

      Definition 5. Consider a particle of mass m in a force field ( )F r
�
�

, where r
�

 is the 
particle’s position vector relative to the origin O of an inertial reference frame. Let C 
be a curve representing the trajectory of the particle from point A to point B in this 
field. Then, the line integral  
 

       ( )
B

AB A
W F r dr= ⋅∫

�
� �

                                                 (12) 

 
represents the work done by the force field on m along the path C. (Note: This defini-
tion is valid independently of whether or not additional forces, not related to the field, 

are acting on the particle; i.e., regardless of whether or not ( )F r
�
�

 represents the total 
force on m.)  
 

      Theorem 4. Let ( )F r
�
�

 represent the total force on a particle of mass m in a force 
field. Then, the work done on the particle along a path C from A to B is equal to  
 

       , ,( )
B

AB k B k A kA
W F r dr E E E∆= ⋅ = − =∫

�
� �

                                 (13) 

 
where  

                      
2

21

2 2k
p

E mv
m

= =                                                    (14) 

 
is the kinetic energy of the particle.  
 
      Proof. By using Eq. (6), we have:  
 

               21 1
( ) ( )

2 2

dv
F dr m dr mv dv m d v v m d v mvdv

dt
⋅ = ⋅ = ⋅ = ⋅ = =

�
�
� � � � � �

,   

 
from which Eq. (13) follows immediately.  
 

      Definition 6. A force field ( )F r
�
�

 is said to be conservative if a scalar function 

( )pE r
�

 (potential energy) exists, such that the work on a particle along any path from 

A to B can be written as  
 

    , ,( )
B

AB p A p B pA
W F r dr E E E∆= ⋅ = − = −∫

�
� �

                               (15) 
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      Theorem 5. If the total force ( )F r
�
�

 acting on a particle m is conservative, with an 

associated potential energy ( )pE r
�

, then the quantity  

 

        21
( )

2k p pE E E mv E r= + = +
�

                                         (16) 

 
(total mechanical energy of the particle) remains constant along any path traced by 
the particle (conservation of mechanical energy).  
 
      Proof. By combining Eq. (13) (which is generally valid for any kind of force) with 
Eq. (15) (which is valid for conservative force fields) we find:  
 
                  ( ) 0 .k p k p k pE E E E E E const∆ ∆ ∆= − ⇒ + = ⇒ + =    

 
      Theorems 4 and 5 are readily extended to the case of a system of particles (see, 
e.g., [2-8]).  
 
 
6.  Some conceptual problems  
 
After establishing our axiomatic basis and demonstrating that the standard Newtonian 
laws are consistent with it, the development of the rest of mechanics follows familiar 
paths. Thus, as we saw in the previous section, we can define concepts such as angu-
lar momentum, work, kinetic and total mechanical energies, etc., and we can state de-
rivative theorems such as conservation of angular momentum, conservation of me-
chanical energy, etc. Also, rigid bodies and continuous media can be treated in the 
usual way [2-8] as systems containing an arbitrarily large number of particles.  
      Despite the more “economical” axiomatic basis of Newtonian mechanics sug-
gested here, however, certain problems inherent in the classical theory remain. Let us 
point out a few:  
 
      1. The problem of “inertial frames”  
 
      An inertial frame of reference is only a theoretical abstraction: such a frame can-
not exist in reality. As follows from the discussion in Sec. 3, the origin (say, O) of an 
inertial frame coincides with the position of a hypothetical free particle and, more-
over, any real free particle moves with constant velocity relative to O. However, no 
such thing as an absolutely free particle may exist in the world. In the first place, 
every material particle is subject to the infinitely long-range gravitational interaction 
with the rest of the world. Furthermore, in order for a supposedly inertial observer to 
measure the velocity of a “free” particle and verify that this particle is not accelerat-
ing relative to him/her, the observer must somehow interact with the particle. Thus, 
no matter how weak this interaction may be, the particle cannot be considered free in 
the course of the observation.  
 
      2. The problem of simultaneity  
 
      In Sec. 4 we used our two postulates, together with the definition of force, to de-
rive the action-reaction law. Implicit in our arguments was the requirement that action 
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must be simultaneous with reaction. As is well known, this hypothesis, which sug-
gests instantaneous action at a distance, ignores the finite speed of propagation of the 
field associated with the interaction and violates causality.  
 
      3. A dimensionless “observer”  
 
      As we have used this concept, an “observer” is an intelligent free particle capable 
of making measurements of physical quantities such as velocity or acceleration. Such 
an observer may use any convenient (preferably rectangular) set of axes  
(x, y, z) for his/her measurements. Different systems of axes used by this observer 
have different orientations in space. By convention, the observer is located at the ori-
gin O of the chosen system of axes.  
      As we know, inertial observers do not accelerate relative to one another. Thus, the 
relative velocity of the origins (say, O and O΄) of two different inertial frames of ref-
erence is constant in time. But, what if the axes of these frames are in relative rota-
tion (although the origins O and O΄ move uniformly relative to each other, or even 
coincide)? How can we tell which observer (if any) is an inertial one?  
      The answer is that, relative to the system of axes of an inertial frame, a free parti-
cle does not accelerate. In particular, relative to a rotating frame, a free particle will 
appear to possess at least a centripetal acceleration. Such a frame, therefore, cannot be 
inertial.  
      As mentioned previously, an object with finite dimensions (e.g., a rigid body) can 
be treated as an arbitrarily large system of particles. No additional postulates are thus 
needed in order to study the dynamics of such an object. This allows us to regard 
momentum and its conservation as more fundamental than angular momentum and its 
conservation, respectively. In this regard, our approach differs significantly from, 
e.g., that of Simon [1] who, in his own treatment, places the aforementioned two con-
servation laws on an equal footing from the outset.  
 
 
7.  Summary  
 
Newtonian mechanics is the first subject in Physics an undergraduate student is ex-
posed to. It continues to be important even at the intermediate and advanced levels, 
despite the predominant role played there by the more general formulations of La-
grangian and Hamiltonian dynamics.  
      It is this author’s experience as a teacher that, despite its apparent simplicity, 
Newtonian mechanics contains certain conceptual subtleties that may leave the deep-
thinking student with some degree of confusion. The average student, of course, is 
happy with the idea that the whole theory is built upon three rather simple laws attrib-
uted to Newton’s genius. In the mind of the more demanding student, however, puz-
zling questions often arise, such as, e.g., how many independent laws we really need 
to fully formulate the theory, or, which ones should be regarded as truly fundamental 
laws of Nature, as opposed to others that can be derived as theorems.  
      This article suggested an axiomatic approach to introductory mechanics, based on 
two fundamental, empirically verifiable laws; namely, the principle of conservation of 
momentum and the principle of superposition for interactions. We showed that all 
standard ideas of mechanics (including, of course, Newton’s laws) naturally follow 
from these basic principles. To make our formulation as economical as possible, we 
expressed the first principle in terms of a system of particles and treated the single-
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particle situation as a special case. To make the article self-contained for the benefit of 
the student, explicit proofs of all theorems were given.  
      By no means do we assert, of course, that this particular approach is unique or 
pedagogically superior to other established methods that adopt different viewpoints 
regarding the axiomatic basis of classical mechanics. Moreover, as noted in Sec. 6, 
this approach is not devoid of the usual theoretical problems inherent in Newtonian 
mechanics (see also [9,10]).  
      In any case, it looks like classical mechanics remains a subject open to discussion 
and re-interpretation, and more can always be said about things that are usually taken 
for granted by most students (this is not exclusively their fault, of course!). Happily, 
some of my own students do not fall into this category. I appreciate the hard time they 
enjoy giving me in class!  
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