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Abstract: The Galilean invariance of the work-energy theomNewtonian
Mechanics is explicitly demonstrated.

Definition: A physical statement of Newtonian Mechanics isl gaibeGalilean in-
variant if it is valid with respect to alinertial observergcf. Sec. 3.1 of [1]). If this
statement is expressible by means of a mathematigsdtion, this equation must as-
sume thesame formin all inertial frames of reference

Consider any two inertial observedsandO” with corresponding coordinate systems

(or systems of axes¥,(y, 2) and &’,y’,Z). LetV be the velocity oD’ relative toO.
Clearly, this velocity is constant in time.

Consider also a particle of mass moving with velocityv and acceleratiod with
respect td, and with velocityv' and acceleratio@’ with respect t@’. As shown in
Sec. 2.8 of [1],

'=v-V
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I

a=a W
By Newton’s 29 law, the total force om according ta®© andO’ is
F=dp/dt=ma and F'=dp Mdt= ma,
respectively, whergd = mv and p’'= mv . In view of (1), then,
E-F @)

Assume now that the particie is inside a force field® () and moves from poirA

to pointB along some curve in space. The inertial obser@easndO” will generally
perceivedifferenttrajectories om from A to B. Both observers, however, define force
according to Newton's™ law. Given that the work-energy theorem is a dicemse-
guence of that law (see Sec. 4.3 of [1]), this tteomust be valid for both observers.
That is,W=AE and, independentlyV'=AEy’, whereW is the work done om by the
field along the patiAB, while AEx = Exg —Exa is the change in the particle’s kinetic
energy along that path.

Let us now verify explicitly thatif W=AEx for observerO, then W'=AEy" for any
other inertial observed'.
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At time t the particlem passes through the trajectory point with positrentor r'(t)
relative to observe®, or r'(t) relative to observe®’. By (2), both observers record
the same force om at this instant, i.e.,

F'(F't))=F (rt)) orsimply F't{ }=F ] 3)

(Careful: a prime doesot denote a derivative with respectttp Now, let W andW’
be the works done am from A to B according tdD andO’, respectively. We have:

W= F(r)-dr=] ﬁ(?(t))-%dt:ﬁﬁ(t).vm dit

and, similarly,
W= ["F(F)-dF = [ F/()-v() dt
A A )
Taking (1) and (3) into account, we have:
W= ["F()- Wy d- [ () Vdt= W= ¥[ ) d
A A A '
By using Newton’s ¥ law, we have:

W' = W- mVﬁ% dt= W- rﬁvjf =

W'=W- mV: (¥-"y) 4)
On the other hand, the change in kinetic energp#do B is, according t®,

1 1
AE, = =my’— = my’
(=5 Me — 5 MY

while according t@” and in view of (1),

A =2m(w) =S n{ W) =S NP1 F) = e V- T V).
By using the identity
V-V f= (v=V)- (V= V)= ¥+ V-2V \

atA andB, we find:



_1 2 2 <, \ Y
AE, _Em(\@ -V -2 V27 \a =

AE, = AE,~mV- (- (5)

Subtracting (5) from (4), we havé/'—AE, = W-AE,. So,if W-AE=0 < W= AE
(i.e., if the work-energy theorem is valid in tBeframe) thenW'= AE," (the theorem
is valid in theO’-frame also). In other words, the work-energy theoie Galilean
invariant.

Exercise:Demonstrate in a similar way the Galilean invac&amf the angular mo-
mentum — torque relation

where L = mTxV is the angular momentum of the partioleelative toO, and where
F is the total force om (see Sec. 3.7 of [1]).

[Hint: Assume thaf’ =F -Vt (this means that the origi®andO’ of the two inertial
frames coincide at=0; as beforeV is the constant velocity d®’ relative toO).
EvaluateL' =m7 xV and, by using Newton's"2law, show that

9t _ 2 (UxE (6)

T'=T-tVxF 7

Finally, subtract (7) from (6).]
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