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The cases of conservative and oscillatory Newtosisiems in one dimension are
studied. Certain unique properties of simple hatimorotion are noted.

A. One-dimensional conservative systems

1. The general solution to the problem
Consider a particle of mass, moving along thec-axis under the action of a total
force F(X). The positiorx(t) of the particle as a function of time is foundibtegrat-
ing the second-order differential equation (Newsosecond law)
md?x/dt? = F(x) 1)
for given initial conditionsx(tp)=Xo, V(tg)=Vo, where v=dx/dt is the velocity of the

particle.
Define the auxiliary functiod(x) (potential energy of the particle) by

U(x):—joxF(x)dx & H)=- dU d )
Then (1) is written
md*x/dt*+dU/dx =0 .

We multiply by v=dx/dt , which plays the role of an integrating factor:

(dx/dt) (md>x/dt?+dU/dx) = 0.
By noticing that

(dx/ dt) (md?x/dt?) = v (mdv/dt) = (d/dt) (mV?*/2)

and that @x/dt) (dU/dx) = dU/dt, we have: d/dt) (mv?/2 +U)=0 =

mv4/2 +U(X) =T+ U = E = const. (3)

(whereT =kinetic energy) which expresses conservation @il toechanical energy.
From relation (3) we get

(dx/ dt)? = (2im) [E-UX)] = dx/dt = +{(2/m) [E-UX)]} 2.

Integrating this first-order differential equatiand taking into account the initial con-
dition x=x, for t=to, we have:



C.J. PAPACHRISTOU

'[X +dx _t-t, (4)

K {i[E—U(x)]}llz

where the plus sign is chosen for motion inghbsitivedirection (>0, x>X) while the
minus sign applies to motion in thegativedirection {<0, X<xo).

The value of the constalatmay be determined by applying the given initiah-co
ditions to (3):

E = mvo?/2+ U(xo) )
(although, as we will see, other physical consiti@na may also be used).
2. The case of periodic motion
Let us now assume that the potential en&i@y has the form of a U-shaped potential
well (Fig. 1) such that(0)=0 andU(x)>0 for x=0 (this arrangement is always possi-
ble because of the arbitrariness in the definibbthe zero-level of the potential en-

ergy). In general, the graph tf(x) need not be symmetric with respect to the axis
x=0.

Fig. 1

LetE be the total mechanical energy of the particlacSE=T+U with T >0, it
follows thatE >U(x) for any physical motion. The motion is thbsundedbetween
the pointsx, andx, of thex-axis, these points beirigrning pointsat which the parti-
cle stops momentarilygEU = T=0 = v,=vp,=0). The time it takes for a complete
journey fromx, to X, and back to, is found by using (4) with the appropriate sign fo
each direction of motion:

d -d
Lol

p=2[" d (6)

. {ri[E—U(x)]}llz

SinceP is fixed for givenx, andx,, the motion igeriodic with period P. Generally,
the period depends on the limits of integratigrandx, and therefore it depends on
the total energ¥ of the particle. An exception wheRedoesnot depend ork is sim-
ple harmonic motionas we now show.
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3. Simple harmonic motion (SHM)

In SHM the potential energy is @arabolic form: U(X)=kx%/2 , which is symmetric
with respect to the axis=0 (see Fig. 1). The total force isestoring forcegiven by

F(x) = — dU/dx = —kx ) (7

If frictional (damping) forces are present, theatdiorce also contains a velocity-
dependent term-iv= —1dx/dt and the system is no longer conservative.

According to Fig. 1 the motion takes placéaaenx,= —A andx,=A, whereA>0
is theamplitudeof oscillation. At the two extreme points the KineenergyT van-
ishes momentarily and the total energy, which isaé¢p E=T+U and which retains a
fixed value during the motion, is equal to the ptigd energyE=U(+A)=kA%2. Since
E is the same at all points we conclude that

E=mV?/2+kx*/2=kA?/2 (8)

The period of oscillation is found by usirgg:(
A2 -1/2
P=2f {— (E- kx2/2)} d>x.
—-A m

Substituting forE from (8), we find:

p=2[" (#-%)" ax

1/2

where we have seb=(k/m)~“ (angular frequency). Putting/A=u and using the in-

tegral formula

J' du = arcsinu + C

V1-u?

we finally find (see Appendix):
P=2r/w=21(mK¥.

We conclude that, if the potential energgfiparabolic formU(x)=kx%2, the pe-
riod P of motion is independent of the amplitullethus independent of the total en-
ergyE=kA?/2.

But, what ifU(x) is like that in Fig. 1 buhot parabolic? For example, let be of
the formU(X)=Ax"/4 , so thatF(x)= —dU/dx = —1x°. SinceU(X) is symmetric with re-
spect to the axig=0, the periodic motion will take place between plognts x,= —A
andx,=A and the total energy will be equalEsU(+A)=1A%4. The period is

p-2f’{2 (E—zx“/4)}_de= (A=

-1/2

du

Ji-u?

2 1
*= lu_Aj-l
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where we have set=x/A andu=(/2m)*. Obviously,P depends on the amplitude
thus on the total enerdy. (A more general proof regarding non-paraboliceptal
energies, in general, is given in the Appendix.)

Returning to SHM, we may obtain the equatbmotionx=x(t) by using (4) with
U(X)=kx?/2 andE=kA?/2. Let us assume first that the motion is in tbsiive direc-
tion, so that>xo . Settingw=(k/m)*?, we have:

[ (=) " dx=w(t- p).

Xo
Using the integral formula
2 o\~1/2 .
I(A - X ) dx= arcsin(x/A)+ C
and making appropriate substitutions for constamésfind an equation of the form
arcsini/A) = otta = Xx=Asin(wt+a) .
For motion in the negative directiox<{p) we choose the minus sign in (4), so that

[ ()" dx=—w(t- ).

Xo

This yields a result of the form
arcsini/A) = —wt+ff = x=-Asin(wt-p) .

Since the constautis arbitrary (being dependent on the arbitrarystamtsx, andt)
we may set-f=n+a, SO thatx= Asin(wt+a), as before.

Thus, the general solution for SHMx§) = Asin(wt+a) . Physically A is theam-
plitude of oscillation,w is theangular frequencyanda is theinitial phase(i.e., the
phase wt+a att=0).

4. Motion under a constant force of gravity

A projectile of massn is fired straight upward at tintg=0 from the point=0 of the
vertical x-axis, with initial velocityvo>0 (we choose the positive direction of the
axis to be upward). The constant acceleration a¥igyr is directed downward, so that
a=dv/dt= —g. The total force on the particle (assuming naesistance) and the cor-
responding potential energy of the particle aregiky

F(X)=ma=-mg < U(X)=mgx [we assume th&i(0)=0] .
Relation (4) (with the plus sign for upwar@tmon) is written

[ X _ oimpet

0 (E_ mg)91/2

L Explicitly: a = arcsinky/A) —oto.
2 Explicitly: £ = arcsingy/A) + wt,.
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By (5) and by using the initial conditions we hakiat E=mw?/2+U (0)=mvo%/2 (since
U=0 for x=0). Thus, the requiremeti—mgx> 0 yields x < v’/2g. Physically this
means that the particle will reach a maximum helghi,%/2g where it will stop mo-
mentarily before it starts to move downward (i@ the negative direction).

With this restriction on the acceptable valwé x, the integration may be per-
formed to give

(E _ mgxllz — E1/2_ (m/2)l/2 gt )
Squaring this, we find:
x = (2E/m)*2t—gt?/2 .
But, E = mv%/2 = (2E/m)¥?= v, (since vo>0). Thus, finally,
X = Vot — gt4/2

which is, of course, a familiar result.
5. Phase curves of a one-dimensional conservative system

Newton’s law for one-dimensional motiomd®x/dt?=F (x), a second-order differential
equation, may be rewritten as a system of firsepetjuations:

dx/dt=v, mdv/dt=F(x) (9)
Dividing these equations in order to elimindtewe have:

mvdv = F(x) dx = - dU
where

U(x)=—joxF(>()dx o HX=- dU d

Thus, mvdv+dU =d (mv#2 +U)=0 =
mv%/2 +U(X) = E = const. (10)

For each value of the const&n(total energy), Eq. (10) defines a curve in the 2-
dimensionalphase spaceavith coordinatesX v). This curve is called phase curve
The value ofE is uniquely determined by the initial conditiorfstloe system, accord-
ing to (5). Since the solution of the system (Qumsque for given initial conditions,
no two phase curves may intersgcphase space. Let us see two examples:

1. Simple harmonic motion (cf. Sec. 3)

Conservation of mechanical energy in SHM is exmedy m#/2+kxX/2=E =

2 2

2I)E(/k " 2;// - =1 (equation of asllipsg
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Fig. 2

Figure 2 shows a family of ellipses in phase spacggesponding to different values
of E. Notice that, fov=0 = x= +(2E/K)"?= + A, so thatE=kA%2 . Note also that the
equations of motion,dx/dt=v, dvdt=-kx'm}, endow the phase curves with a sense
of direction for increasing (i.e., fordt >0). Indeed, the velocity is positive (nega-
tive) for increasing (decreasing) while v decreases (increasealgebraically for
positive (negative). This indicates that the phase curves are desbribekwise

2. Vertical motion under the force of gra\ity. Sec. 4)
Conservation of mechanical energy is expressethify2 + mgx= E =

V?= (2Im) (E-mg¥ (equation of parabolg

Fig. 3

SinceV? > 0, we must hav& — mgx> 0 = x < E/mg. Physically, this means that the
particle will reach a maximum height=E/mg where it will stop momentarily and
then its direction of motion will be reversed. e ther hand, at=0 the velocity is
+Vo (see Fig. 3) wherey’=2E/m = E=mw?/2. The maximum height is thirsvo%/2g.
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B. Oscillatory motion of (generally) non-conservative systems

1. Second-order linear differential equations

A second-order linear differential equation (DE} hiae general form
y'+al)y +bXx)y="f(X 1)

wherey=y(x) and wherea(x), b(x), f(x) are given functions. Iff (x)=0, the DE (1) is
calledhomogeneous linear

y’+axy +b(x)y=0 (2

As is easy to prove, if a functigi(x) is a solution of (2), then so is the function
y2(X)=Cy1(X) (C=const.). More generally, the following is true:

Theorem 11f y1(X), y2(X),... are solutions of the homogeneous DE (2), thenyever
linear combination of the forg=C; y1(X)+C; y»(X)+... (whereC,, C,,... are con-
stants) also is a solution of (2).

Proof: By substituting fory on the left-hand side of (2) and by taking intcamt
that each of thgi(X), y=(X),... satisfies this DE, we have:

y'+aX)y +b(X)y=Ci(ya”"+ayi + by)) +Ca(y2""+ay."+ byy)+... =0,

Lety;(X) andyx(X) be two non-vanishing solutions of the homogenedHs(2)
[notice that the zero functioy(xX)=0 is a particular solution of (2)]. We say that the
functionsy; andy, arelinearly independenif one is not a scalar multiple of the other.
To put it in more formal terms, linear independeatyg; andy, means that a relation
of the form Cyy;1(X)+C,y2(X)=0 can only be true i€;=C,=0.

If we manage to find two linearly independsalutionsy;(x) andy,(x) of the ho-
mogeneous DE (2) (I can assure you that no othHeti@o linearly independent of the
former two exists!) then thgeneral solutiorof (2) is the linear combination

y =C1yi(x) + C2y2(X) )3

whereC;, C, are arbitrary constants.

Theorem 2:The general solution of the non-homogeneous DHEs(ihe sum of
the general solution (3) of the corresponding hoenegus equation (2) arahy par-
ticular solutionof (1).

Analytically: Lety;(X), y2(X) be two linearly independent solutions of the hgeto
neous DE (2), and lgt(x) be any particular solution of (1). Then, the gahsolution
of (1) is

y = C1yi(¥) + Caya(X) +Yo(X) (4)
This practically means that, for any choggnany other particular solution of (1) can

be derived from (4) by properly choosing the comist&; andC, . Since (4) contains
the totality of particular solutions of (1), it ntuse the general solution of (1).
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2. Homogeneous linear equation with constant coefficients
This DE has the form
y’'+ay'+by=0 ®)

with constant andb. It will be assumed tha andb are real numbers.

Theorem 3:If the complex functiony=u(x)+iv(X) satisfies the DE (5), then the
same is true for each of the real functigrsu(x) andy,=v(x) (real and imaginary
part ofy, respectively).

Proof: Putting y=u+iv into (5), we find:
(u'+au'+bu)+i(v'+av'+bv)=0,

which is true iffu”+au+bu=0 andv’'+av+bv=0.

The standard method for solving (5) is théofing: We try an exponential solu-
tion of the formy=e**. Then,y'=ke**, y"'=k’e* and (5) yields (after eliminatiref):

K>+ ak +b =0 (characteristic equation (6)

We distinguish the following cases:

1. Eq. (6) has real and distinct rokisk, . Then, the functiond* ande'“* are line-
arly independent and, according to (3), the gersaaition of (5) is of the form

y = C €% + C @)

2. Eq. (6) has real and equal rodtss k. =k. The general solution of (5) is, in this
case (check!),

y = (C1+Cox) €% (8)

3. Eq. (6) has complex conjugate roktso+if, ko=a—if (wherea, S are real). The
general solution of (5) is

y = CL ¥+ C "= e™(Cre™ + C,e ™) .

+ifx

By Euler's formula,e™" = cospx + i sin fx . We thus have:

y = e”[(Cy+C)cospx +i (C1—Cy) sinpx] .

Since the (generally complex) constaftsand C, are arbitrary, we may put; in
place of C;+C, andC; in place ofi (C;—C,), so that, finally,

y = e”(Crcospx + C,sinpx) 9)
In any case, the general solution of (5) amsttwo arbitrary constan@ andC,.

Upon assigning specific values @ and C, we get aparticular solutionof (5). The
values ofC; and C, (and thus the particular solution itself) are deieed from the
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general solution if we are given twwitial conditionsthat the sought-for particular
solution must obey. There are two kinds of initahditions:

(@) We are given the values gfx) andy’(x) for some value=x; of x.

(b) We are given the values gfx) for x=x; andx=x.
Examples:

1. y'-y-2y=0 = a=-1, b=-2. The characteristic equation (6) is written:
K~k —2 =0, with real root¥;=2, ko= —1. The general solution (7) is
y = C;e® + C,e™*. Assume the initial conditions=2 andy = -5 whenx=0. Then,
Ci= -1, C,=3 (show it!) and we get thgarticular solution y = —e* +3¢e™*.

2. y'-6y+9y=0 = a=-6, b=9. The characteristic equation (6) is written:
K¥—6k +9 =0, with real and equal roots=k,=3. The general solution (8) is
y = (C1+C,ox) ¥

3. y—=4y'+13y=0 = a=-4, b=13. The characteristic equation (6) is written:
K¥—4k +13 = 0, with complex conjugate rooks=2+3, k:=2-3. The general solu-
tion (9) is (witha=2, f=3): y = e%(C,cos3x + C,sin3x). (Show that essentially the
same result is found by making the alternative ahe+2, f=-3.)

3. Harmonic oscillation
In a harmonic oscillation along theaxis the total force on the oscillating body (of
massm) is F= —kx (k>0), wherex is the momentary displacement of the body from the
position of equilibrium X=0). By Newton’s second law we have tliratma, wherea
is the acceleration of the body=d *x/dt?. Therefore,

md*x/ dt*= —kx
or, settingk/m= w? (Wwhere we assume that-0),
X+ w?x=0 (10)

Eq. (10) is a homogeneous linear DE of thhenf(b) with x in place ofy andt in
place of x (notice that the first-derivative term is missimg this case). The
characteristic equation (6) is writtekf+»?=0 (or, analytically k*+0k+w?=0), with
complex rootk=+iw (analytically,ki=0+w, ko.=0-iw). The general solution of (10)
is given by (9), withv=0 andf=w:

x= Ccoswt+ C,sinwt (11)

where we assume that the constant coeffici€ndC, are real in order for the solu-
tion (11) to have physical meaning.
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The general solution (11) can be put in déife but equivalent form by setting
Ci=Asing, C,=Acosp (A>0) < A=(C;*+C,)Y?, tanp=C,/C,.

Then,
x=Asin(wt+ @) 12)

The positive constart is called theamplitudeof the oscillation, while the angleis
called theinitial phase(the value of thgphasewt+¢ at timet=0). The positive con-
stantw is theangular frequencyof oscillation, to be called jusfrequency” in the
sequel.

Notice that, if we se€;=A cosgp, C,= —Asing in (11), we will get the general
solution of (10) in the form

x= Acos(wt+ ¢) (13)

which is equivalent to (12). Indeed, equation (fidlows directly from (12) by put-
ting ¢+ (7/2) in place ofp (which is arbitrary anyway) in the latter equation

4. Damped oscillation
In a damped oscillation, in addition to the restgrforce—kx opposite to the dis-
placementx from the equilibrium position, there is a frictanforce Av= —-idx/dt
(#>0) opposite to the velocity. The total force on the body’i§= —kx-idx/dt. By
Newton’s law,F=md?x/dt® Hence,

md?x/ dt?=—kx — dx/dt .
We set

k/m=w¢® (wo= natural frequency of oscillatiowithout damping), /m= 2y,

so that
X+ 2yX + wg Xx=0 (14)

Eq. (14) is a homogeneous linear DE. Theatttaristic equation (6) is
I+ 2)k+ 0’=0 = k= -+ ()P—wo?)2.

We distinguish the following cases:

1.Large damping< y >wo. We have two real solutions:
k]_= —y + (yZ_a)OZ)l/Z' k2= —— (yZ_a)OZ)l/Zl
The general solution of (14) is of the form (7):

X = Cy e + C, € 15

% Note that a velocity-dependent forcenist conservative. Thus, conservation of energy metldadsot
apply in this case.

10
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Let us assume th&;>0 andC,>0. Given thak;<0 andk,<0 (why?) we see that>0

at all timest ka1, moreover x—0 ast—o. That is, as the timeincreases, the moving
object approaches the equilibrium positiei® without ever crossing it. The motion is
thereforenon-oscillatory

2.Critical damping < y =wo. Then, ki= k, = —y, and the general solution of
(14) is of the form (8):

X = (C1+Cot) €'= (C,+Cot) e (16)

If we assume thaf;>0 andC,>0, we see again that-0 at allt and thatx—0 ast—oo.
(For the termt e = t / &' we may use L’'Hospital’s rule for the indetermin&tem
oofoo; show this!) Thus, there is no oscillation in thése either.

3.Small dampinge y <wo. We have two complex conjugate solutions:
k=—+iw where wi= (wo’—y*)"2.
The general solution will be of the form (9), witls = and f=w :
x= e (Cicoswit + Cysinmit) ,
or, by settingCy = Asing, C,=Acosp (A>0),
x=Ae™ sin(wit+ ¢) (17)

We notice that the amplitudée™ decreases exponentially with time (Fig. 1). Thus,
strictly speaking, damped oscillatory motioma periodic.

Fig. 1

11
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5. Forced oscillation

In a forced oscillation, in addition to the restgyiforce—kx and the frictional force
—Av=-1dx/dt the body is subject to an external force of thenfor

F(t) = Fosinwst (Fo>0) .

The total force on the body 5= —kx-Adx/dt+F( sinwst. By Newton’s lawwe have
that

md2x/dt? = —kx —A dx/dt + FoSinawst .
We set

k'm=w¢® (wo= natural frequency A/m=2y, Fo/m=fy,

so that
X'+ 2yX + we’ x= fosinwst (18)
Eq. (18) is a non-homogeneous linear DE. Adiog to Theorem 2 of Sec. 1, its

general solution is the sum of the general solubibthe corresponding homogeneous
equation,

X+ 2px'+ a)ozx= 0,

andany particular solutiorof (18). For small damping € wg) the general solution of
the homogeneous equation is given by (17):

x=Are " sin(wit+ p1) where wi= (wo®—y*)"?.
As can be verified, a particular solution of (18}he following:
X =Asin(wst+ @) 19)
where
fo 2y wy

A= and tan@ =

: L (20)

The general solution of (18) is, therefore,

x=Are7 sin(wit+ ¢1) +AsiIn(wst+ ) (21)
with arbitrary Aq, @1 . The first term on the right in (21) decreasesoexgntially with
time and dies out quickly. In a steady-state sibmattherefore, what remains is the

particular solution (19):

x=Asin(wst+¢).

12
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The amplitud@ of oscillation is a function of the applied freeqeg s, according
to (20). This amplitude attains a maximum value nkiee denominator in the first
relation (20) becomes minimum. This occurs when

ot = (wo?=2y°)? = wa (22)
Proof: We setw; = w, for simplicity, and we consider the function
Y(w) = (0°— 0ed)? + H*w?,
so that A= fo / [¥(»)]*2% We can show that
¥'(w) =0 for w = (we*=2y*)"> =wa and ¥ (wp) =8wa>>0 .

Thus, for small damping {2 < wo?) the function¥(w) is minimum hence the ampli-
tudeA is maximumwhen ws=wa . This situation is calledmplitude resonance

In Fig.2 it is assumed that<i, < y1<y» . This means that, in accordance with
(22), wa1> wa2 . In the case of no damping=0 < y=0) Eq. (22) yieldsva=wg. In
other words, in amndampedorced oscillation the amplitude becomes maximim (
fact, infinite) when the applied frequeney is equal to the natural frequen@y of
oscillation.

=

P - — —

Fig. 2
By differentiating (19) we find the velocity the oscillating body:
vV = dxdt = ws Acos(wst+ @) =Vp cos(wst+ @)

where, by (20),

13
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The velocity amplitude/, becomes maximum when the denominator on the rgght
minimum, which occurs fowr =wo (Fig. 3). The kinetic energmw?2 then reaches
its maximum value and thereasergy resonance

Fig. 3

Note that, in contrast to amplitude resonatice frequencys; for energy reso-
nance is independent of the damping fadtand is always equal to thmatural fre-
guencywy of the oscillator. At this frequency the work slip@ by the external force
F(t) to the oscillator per unit time is maximum. Tgtthe oscillator absorbs the larg-
est possible power from the external agent thattexiee forcd-.

Notice also that, in the case of zero damgir® < y=0) the velocity amplitude
Vo becomesnfinite at energy resonance, i.e., tof=wgo. This rather unphysical situa-
tion is, of course, purely theoretical since a na@ital motion with no friction what-
soever is practically impossible!

14



ONE-DIMENSIONAL NEWTONIAN SYSTEMS

Appendix: Amplitude dependence of period

As we have shown, the general solution to the omeaisional conservative Newto-
nian problem is

'[X + dx _t-t, (1)

" {i[E—U(x)]}llz

where the plus sign is chosen for motion in thatp@sdirection ¢>0, x>Xo) while the
minus sign applies to motion in the negative diogc{v<0, X<Xo).

Let us assume that the potential en&i@) has the form of a U-shaped potential
well (Fig. 1) such that)(0)=0 andU(x)>0 for x~0. The graph ot(x) is assumed to be
symmetric with respect to the axis0, which means thdd(x) is anevenfunction:

U (—)=U (X).

-A O +A
Fig. 1

If E is the total mechanical energy of the particlenthaccording to Fig. 1, the
motion is bounded between the poirts and+A of the x-axis, which are turning
points at which the particle stops momentarily.c8i& is constant, its value at all
points equals its value at the turning points; i.e.

E=U(@A) (2)

The time it takes for a complete journey frefito +A and back te-Ais found by
using (1) with the appropriate sign for each dimtbf motion:

d -A —d
P:IAA{..})i/Z * IA:: 3 1)/(2

A dx
A{;[E—U(x)]}

SinceP is fixed for a giverA, the motion is periodic about the pokstO, with ampli-
tude equal tA and with periodP. It follows from (2) and (3) that the periddlde-
pends oA and thus on the total energyof the particle. We will now show that an
exception wher® doesnot depend oA (thus onE also) is simple harmonic motion.

7z = (22" [E- U M o 3)

15
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SinceU(x) is an even function witkl(0)=0, it can be expanded into a Maclaurin
series of the form

Ux=>ax (4)
=1
where the coefficients are not necessarily all different from zero. Fr@hwe have

E:U(J_rA):iar A
1=1
so that

E—U(x):ia(A@'— >5’).
1=1

Equation (3) then yields

By setting X/A=u < x=Au, we get:

P= (2m)1/2AJ'_11{2 a A (1- &‘)TIZ d (5)

It is obvious that, in generd, depends oi\. The only exception where is not
dependent o\ is the case where the following condition is $egiis a =0 for | #1.
That is, the only nonvanishing coefficieatin the series (4) ia;. By settinga; = k/2
the potential energy (4) reduces Wgx) = kx/2 , which corresponds to a restoring
force of the form

F(X) = — dU/dx = —kx (6)

The periodic motion is thesimple harmonic motioSHM) and the period (5) re-
duces to

P=2(m/ K2 jfl(l— uz)ll2 du= 2(m R arcsin fi,

_ 12| % | %
=2(m/k) {2 ( zﬂ =N

1/2 1/2
P= Zﬂ(mj _z where o _Z (kj :
k 0] P m

We notice that the period of SHM is amplitude-inelegeent, hence also energy-
independent.
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ONE-DIMENSIONAL NEWTONIAN SYSTEMS

It is of interest to examine a one-dimensigperiodic motion that follows a
curvedpath (where by “one-dimensional” we now mean thaingle generalized co-
ordinate — such as, e.g., an angle or a distaiocg dhe curve — is needed in order to
specify the location of the particle). A nice exdenis that of an oscillating pendulum
(Fig. 2; see also Sec. 5.5 and Problem 25 of kg position of the masa is speci-
fied by the arc lengt®A=s=I6 or, equivalently, by the angte(in rad). The algebraic
value of the velocity ofn is v=dg/dt=Id@/dt; it may be positive or negative, depend-
ing on the direction of motion relative to the uaibgent vector, .

Fig. 2

The motion is governed by the tangential congmtw; = —mgsind (algebraic
value) of the weightv. The tangential equation of motionrofis

mdv/dt = —-mgsind = dv/dt=—gsind (7)

We seek a conserved quantity that associates tbeityev with the positiond. We
could, of course, work with (7) directly, but thesean easier way; namely, conserva-
tion of mechanical energy. This principle may belegal in view of the fact that the
massm is subject to the conservative force of gravitg dne tensiorf of the string
which, being normal to the velocity, produces nakn@f. Sec. 4.5 of [1]). The poten-
tial energy ofm at pointA (Fig. 2) is

U@ =mg(l — I cog)) =mgl(1-co9) ,

where we have assumed thHD)=0 (i.e.,U is zero at the lowest poi@). If a is the
angular amplitude of oscillation (i.e., the maximamgle of deflection of the string
from the vertical) then d@= +a the kinetic energy¥ vanishes and the total mechanical
energyE is equal toU(xa). Applying conservation of mechanical energy beman
arbitrary angleg and the maximum anglé=o , we have:

mv?/2 +mgl (1—co¥) = 0 +mgl(1—cosx) = (after eliminatingm)
V2 = 2g| (co¥ —cosy) (8)
Exercise:By differentiating (8) with respect toand by using the fact thetldo/dt,

recover the equation of motion (7). Converselywsiizat (8) is a direct consequence
of (7). [Hint: Multiply (7) byv.]
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Settingv=Id#/dt in (8), we get a first-order differential equation:
do/ dt = +[(29/l ) (co®) —cos)] 2,

which is integrated to give

0 2 -1/2
jg i[l—g(cosﬁ— cosx i do=t-t, .

0

The period of oscillation is [cf. Eq. (3)]

) -1/2
P= Zj {_g (cosf - cow } do

L 9)
=2 /g)" zj'_a (cos? — cos )?d6

Obviously,P depends on the angular amplitudeLet us assume, however, that this
amplitude is very smalkz <<1. We may then make the approximations

co¥)~1-60%2 and cas~1—d?/2.

Furthermore, we set/o=u <> 6=au. It is then a straightforward exercise to showt tha
(9) reduces to

-1/2
P=2( /g)l’zj_ll(l— u?) du= 2(1/ g/ arcsind’,

_ 1207 [ 7
or{3(5)) -

P=2x(/g)"?,
which is the familiar expression for the periodostillation of a pendulum executing
simple harmonic motion for small angles of deflestirom the vertical. Once again,

the SHM is seen to be the only one-dimensionalbperimotion in which the period
does not depend on the amplitude of oscillation.
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