
 
 

C. J. Papachristou 
 
 
 
 
 
 

 
 
 
 

One-Dimensional Newtonian Systems 

 
 

• Conservative and Periodic Systems 

• Oscillatory Systems 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Hellenic Naval Academy 

2022 
 
 
 



 
 
 
 
 
 



 1 

One-dimensional Newtonian systems 
 

C. J. Papachristou 

Department of Physical Sciences, Hellenic Naval Academy 
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The cases of conservative and oscillatory Newtonian systems in one dimension are 
studied. Certain unique properties of simple harmonic motion are noted.  

 
A. One-dimensional conservative systems 

 
      1. The general solution to the problem  
 
Consider a particle of mass m, moving along the x-axis under the action of a total 
force F(x). The position x(t) of the particle as a function of time is found by integrat-
ing the second-order differential equation (Newton’s second law)  
 

               m d 2x / dt 2 = F(x)                                                   (1)        
 
for given initial conditions  x(t0)=x0 ,  v(t0)=v0 ,  where  v=dx/dt  is the velocity of the 
particle.  
      Define the auxiliary function U(x) (potential energy of the particle) by  
 

        
0

( ) ( ) ( ) /
x

U x F x dx F x dU dx′ ′= − ⇔ = −∫                                  (2) 

 
Then (1) is written  

m d 2x / dt 2 + dU / dx = 0 . 
 
We multiply by  v=dx/dt , which plays the role of an integrating factor:  
 

(dx / dt) (m d 2x / dt 2 + dU / dx) = 0 .  
 
By noticing that  
 

(dx / dt) (m d 2x / dt 2 ) = v (m dv / dt) = (d / dt) (m v2/2) 
 
and that  (dx / dt) (dU / dx) = dU / dt , we have:  (d / dt) (m v2/2 + U ) =  0  ⇒   
 

       m v2/2 + U(x) ≡ T +  U = E = const.                                       (3) 
 
(where T = kinetic energy) which expresses conservation of total mechanical energy.  
      From relation (3) we get  
 

(dx / dt)2 = (2/m) [E–U(x)]  ⇒  dx / dt = ± { (2/m) [E–U(x)]} 1/2 .  
 
Integrating this first-order differential equation and taking into account the initial con-
dition x=x0 for t=t0 , we have:  
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where the plus sign is chosen for motion in the positive direction (v>0, x>x0) while the 
minus sign applies to motion in the negative direction (v<0, x<x0).  
      The value of the constant E may be determined by applying the given initial con-
ditions to (3):  

          E = m v0
2/2 +  U(x0)                                                      (5) 

 
(although, as we will see, other physical considerations may also be used).  
 
      2. The case of periodic motion  
 
Let us now assume that the potential energy U(x) has the form of a U-shaped potential 
well (Fig. 1) such that U(0)=0 and U(x)>0 for x≠0 (this arrangement is always possi-
ble because of the arbitrariness in the definition of the zero-level of the potential en-
ergy). In general, the graph of U(x) need not be symmetric with respect to the axis 
x=0.  

x

E

Oax bx

U

 
Fig. 1 

 
      Let E be the total mechanical energy of the particle. Since E=T+U with T ≥0, it 
follows that E ≥U(x) for any physical motion. The motion is thus bounded between 
the points xa and xb of the x-axis, these points being turning points at which the parti-
cle stops momentarily (E=U ⇒ T=0 ⇒ va=vb=0). The time it takes for a complete 
journey from xa to xb and back to xa is found by using (4) with the appropriate sign for 
each direction of motion:  
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∫                                             (6) 

Since P is fixed for given xa and xb , the motion is periodic with period P. Generally, 
the period depends on the limits of integration xa and xb and therefore it depends on 
the total energy E of the particle. An exception where P does not depend on E is sim-
ple harmonic motion, as we now show.  
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      3. Simple harmonic motion (SHM)  
 
In SHM the potential energy is of parabolic form: U(x)=kx2/2 , which is symmetric 
with respect to the axis x=0 (see Fig. 1). The total force is a restoring force given by  
 

F(x) = – dU / dx = – kx                                                 (7) 
 
If frictional (damping) forces are present, the total force also contains a velocity-
dependent term  –λv= –λdx/dt  and the system is no longer conservative.  
      According to Fig. 1 the motion takes place between xa= –A and xb=A, where A≥0 
is the amplitude of oscillation. At the two extreme points the kinetic energy T van-
ishes momentarily and the total energy, which is equal to E=T+U and which retains a 
fixed value during the motion, is equal to the potential energy: E=U(±A)=kA2/2. Since 
E is the same at all points x, we conclude that  
 

       E = m v2 / 2 + k x2 / 2 = k A2 / 2                                            (8)     
 
      The period of oscillation is found by using (6):  
 

1/ 2
22

2 ( / 2)
A

A
P E kx dx

m

−

−

 = − 
 ∫ . 

 
Substituting for E from (8), we find:  
 

( ) 1/ 22 22 A

A
P A x dx

ω

−

−
= −∫      

 
where we have set  ω=(k/m)1/2  (angular frequency). Putting  x/A=u  and using the in-
tegral formula  

2
arcsin

1

du
u C

u
= +

−
∫  

we finally find (see Appendix):  
 

P = 2π / ω = 2π (m / k)1/2 . 
 
      We conclude that, if the potential energy is of parabolic form: U(x)=kx2/2 , the pe-
riod P of motion is independent of the amplitude A, thus independent of the total en-
ergy E=kA2/2.  
      But, what if U(x) is like that in Fig. 1 but not parabolic? For example, let U be of 
the form U(x)=λx4/4 , so that F(x)=  –dU/dx =  –λx3. Since U(x) is symmetric with re-
spect to the axis x=0, the periodic motion will take place between the points xa=  –A 
and xb=A and the total energy will be equal to E=U(±A)=λA4/4.  The period is  

( )
1/ 2

1/ 2 14 4 4

1 4

2 2 2
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where we have set u=x/A and µ=(λ/2m)1/2. Obviously, P depends on the amplitude A, 
thus on the total energy E. (A more general proof regarding non-parabolic potential 
energies, in general, is given in the Appendix.)  
      Returning to SHM, we may obtain the equation of motion x=x(t) by using (4) with 
U(x)=kx2/2 and E=kA2/2. Let us assume first that the motion is in the positive direc-
tion, so that x>x0 . Setting ω=(k/m)1/2 , we have:  

( )
0

1/ 22 2
0( )

x

x
A x dx t tω

−
− = −∫ . 

Using the integral formula  

( ) 1/ 22 2 arcsin( / )A x dx x A C
−

− = +∫  

and making appropriate substitutions for constants, we find an equation of the form1  
 

arcsin(x/A) = ωt+α    ⇒    x =  A sin(ωt+α) . 
 
For motion in the negative direction (x<x0) we choose the minus sign in (4), so that  

( )
0

1/ 22 2
0( )

x

x
A x dx t tω

−
− = − −∫ . 

This yields a result of the form2  
 

arcsin(x/A) = – ωt+β    ⇒    x =  –A sin(ωt–β) . 
 
Since the constant β is arbitrary (being dependent on the arbitrary constants x0 and t0) 
we may set  –β ≡ π+α , so that  x =  A sin(ωt+α), as before.  
      Thus, the general solution for SHM is  x(t) =  A sin(ωt+α) . Physically, A is the am-
plitude of oscillation, ω is the angular frequency and α is the initial phase (i.e., the 
phase  ωt+α  at t=0).  
 
      4. Motion under a constant force of gravity  
 
A projectile of mass m is fired straight upward at time t0=0 from the point x=0 of the 
vertical x-axis, with initial velocity v0>0 (we choose the positive direction of the x-
axis to be upward). The constant acceleration of gravity is directed downward, so that 
a=dv/dt= –g . The total force on the particle (assuming no air resistance) and the cor-
responding potential energy of the particle are given by  
 

F(x) =  ma =  –mg   ⇔   U(x) =  mgx   [we assume that U(0)=0] . 
 
      Relation (4) (with the plus sign for upward motion) is written  
 

1/ 2
1/ 20

(2/ )
( )

x dx
m t

E mgx
=

−∫  . 

 

                                                 
1 Explicitly:  α = arcsin(x0/A) – ωt0 .  
2 Explicitly:  β = arcsin(x0/A) + ωt0 .  
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By (5) and by using the initial conditions we have that E=mv0
2/2+U(0)=mv0

2/2 (since 
U=0 for x0=0). Thus, the requirement E–mgx ≥ 0 yields x ≤ v0

2/2g. Physically this 
means that the particle will reach a maximum height h=v0

2/2g where it will stop mo-
mentarily before it starts to move downward (i.e., in the negative direction).  
      With this restriction on the acceptable values of x, the integration may be per-
formed to give  

(E – mgx)1/2 = E 
1/2 – (m / 2)1/2 g t . 

Squaring this, we find:  

x = (2E / m)1/2 t – g t 
2/2 . 

 
But,  E = m v0

2/2  ⇒ (2E / m)1/2 = v0  (since  v0 > 0 ). Thus, finally,  
 

x = v0 t – g t 
2/2  

 

which is, of course, a familiar result.  
 
      5. Phase curves of a one-dimensional conservative system  
 
Newton’s law for one-dimensional motion: md 2x/dt 2=F(x), a second-order differential 
equation, may be rewritten as a system of first-order equations:  
 

      dx / dt = v ,     m d v / dt = F(x)                                          (9) 
 
Dividing these equations in order to eliminate dt, we have:  
 

m v dv = F(x) dx = – dU    
where  

0
( ) ( ) ( ) /

x
U x F x dx F x dU dx′ ′= − ⇔ = −∫ . 

 
Thus,   m v dv +  dU = d (m v2/2 + U ) = 0  ⇒  
 

         m v2/2 + U(x) = E ≡ const.                                          (10)         
 
      For each value of the constant E (total energy), Eq. (10) defines a curve in the 2-
dimensional phase space with coordinates (x, v). This curve is called a phase curve. 
The value of E is uniquely determined by the initial conditions of the system, accord-
ing to (5). Since the solution of the system (9) is unique for given initial conditions, 
no two phase curves may intersect in phase space. Let us see two examples:  
 
      1. Simple harmonic motion (cf. Sec. 3)  
 
Conservation of mechanical energy in SHM is expressed by  mv2/2 + kx2/2 =  E  ⇒  
 

2 2

1
2 / 2 /

x v

E k E m
+ =      (equation of an ellipse)  
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O x

v

A− A+

  
 

Fig. 2 
 
Figure 2 shows a family of ellipses in phase space, corresponding to different values 
of E. Notice that, for v=0 ⇒ x= ±(2E/k)1/2 ≡ ± A , so that E=kA2/2 . Note also that the 
equations of motion, {dx/dt =  v ,  dv/dt =  – kx/m}, endow the phase curves with a sense 
of direction for increasing t (i.e., for dt >0). Indeed, the velocity v is positive (nega-
tive) for increasing (decreasing) x, while v decreases (increases) algebraically for 
positive (negative) x. This indicates that the phase curves are described clockwise.  
 
      2. Vertical motion under the force of gravity (cf. Sec. 4)  
 
Conservation of mechanical energy is expressed by  mv2/2 + mgx =  E  ⇒  
 

v2 = (2/m) (E – mgx)     (equation of a parabola)  

 

O x

v

h

0v

0v−

  
 

Fig. 3 
 
Since v2 ≥ 0, we must have E – mgx ≥ 0 ⇒ x ≤ E/mg . Physically, this means that the 
particle will reach a maximum height h=E/mg where it will stop momentarily and 
then its direction of motion will be reversed. On the other hand, at x=0 the velocity is 
±v0 (see Fig. 3) where v0

2=2E/m ⇒ E=mv0
2/2 . The maximum height is thus h=v0

2/2g.  
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B. Oscillatory motion of (generally) non-conservative systems 
 
      1. Second-order linear differential equations  
 
A second-order linear differential equation (DE) has the general form  
 

      y΄΄ +  a(x) y΄ +  b(x) y = f (x)                                            (1) 
 
where y=y(x) and where a(x), b(x),  f (x) are given functions. If  f (x)≡0, the DE (1) is 
called homogeneous linear :  
 

      y΄΄ +  a(x) y΄ +  b(x) y =  0                                               (2) 
 
      As is easy to prove, if a function y1(x) is a solution of (2), then so is the function 
y2(x)=Cy1(x) (C=const.). More generally, the following is true:  

      Theorem 1: If y1(x), y2(x),… are solutions of the homogeneous DE (2), then every 
linear combination of the form y=C1 y1(x)+C2 y2(x)+… (where C1 , C2 ,… are con-
stants) also is a solution of (2).  

      Proof: By substituting for y on the left-hand side of (2) and by taking into account 
that each of the y1(x), y2(x),… satisfies this DE, we have:  
 

y΄΄ +  a(x) y΄ +  b(x) y = C1 (y1΄΄ +  a y1΄ +  b y1) + C2 (y2΄΄ +  a y2΄ +  b y2) +… = 0 . 
 
      Let y1(x) and y2(x) be two non-vanishing solutions of the homogeneous DE (2) 
[notice that the zero function y(x)≡0 is a particular solution of (2)]. We say that the 
functions y1 and y2 are linearly independent if one is not a scalar multiple of the other. 
To put it in more formal terms, linear independence of y1 and y2 means that a relation 
of the form  C1 y1(x)+C2 y2(x) ≡ 0  can only be true if C1=C2=0.  
      If we manage to find two linearly independent solutions y1(x) and y2(x) of the ho-
mogeneous DE (2) (I can assure you that no other solution linearly independent of the 
former two exists!) then the general solution of (2) is the linear combination  
 

y = C1 y1(x) + C2 y2(x)                                                (3) 
 
where C1 , C2  are arbitrary constants.  

      Theorem 2: The general solution of the non-homogeneous DE (1) is the sum of 
the general solution (3) of the corresponding homogeneous equation (2) and any par-
ticular solution of (1).  

      Analytically: Let y1(x), y2(x) be two linearly independent solutions of the homoge-
neous DE (2), and let y0(x) be any particular solution of (1). Then, the general solution 
of (1) is  

    y = C1 y1(x) + C2 y2(x) + y0(x)                                           (4) 
 
This practically means that, for any chosen y0 , any other particular solution of (1) can 
be derived from (4) by properly choosing the constants C1 and C2 . Since (4) contains 
the totality of particular solutions of (1), it must be the general solution of (1).  
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      2. Homogeneous linear equation with constant coefficients  
 
This DE has the form  

      y΄΄ +  a y΄ +  b y =  0                                                    (5) 
 
with constant a and b. It will be assumed that a and b are real numbers.  

      Theorem 3: If the complex function y=u(x)+iv(x) satisfies the DE (5), then the 
same is true for each of the real functions y1=u(x) and y2=v(x) (real and imaginary 
part of y, respectively).  

      Proof: Putting  y=u+iv  into (5), we find:  
 

(u΄΄ +  a u΄ +  b u) + i (v΄΄ +  a v΄ +  b v) = 0 , 
 
which is true iff  u΄΄+a u΄+b u =  0  and  v΄΄+a v΄+b v =  0.  

      The standard method for solving (5) is the following: We try an exponential solu-
tion of the form y=ekx. Then,  y΄=kekx,  y΄΄=k2ekx, and (5) yields (after eliminating ekx):  
 

      k2 + ak +b = 0    (characteristic equation)                                (6) 
 
      We distinguish the following cases:  

    1. Eq. (6) has real and distinct roots k1 , k2 . Then, the functions ek1x and ek2 x are line-
arly independent and, according to (3), the general solution of (5) is of the form  
 

      y = C1 e
k1x + C2 e

k2 x                                                    (7) 
 
    2. Eq. (6) has real and equal roots,  k1 =  k2 ≡ k. The general solution of (5) is, in this 
case (check!),  
 

         y = (C1 + C2 x) ekx                                                     (8) 
 
    3. Eq. (6) has complex conjugate roots  k1=α+iβ , k2=α–iβ (where α, β are real). The 
general solution of (5) is  
 

y = C1 e
k1x + C2 e

k2 x = e αx (C1 e
 iβx + C2 e

 –iβx ) . 
 
By Euler’s formula,  e ±iβx = cos βx ± i sin βx . We thus have:  
 

y = e αx [(C1 +C2) cos βx + i (C1 – C2) sin βx ] . 
 
Since the (generally complex) constants C1 and C2 are arbitrary, we may put C1 in 
place of  C1+C2  and C2 in place of  i  (C1 – C2), so that, finally,  
 

     y = e αx (C1 cos βx + C2 sin βx )                                          (9) 
 
      In any case, the general solution of (5) contains two arbitrary constants C1 and C2 . 
Upon assigning specific values to C1 and C2 we get a particular solution of (5). The 
values of C1 and C2 (and thus the particular solution itself) are determined from the 
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general solution if we are given two initial conditions that the sought-for particular 
solution must obey. There are two kinds of initial conditions:  

    (a) We are given the values of  y(x) and y΄(x) for some value  x=x0  of x.  

    (b) We are given the values of  y(x) for  x=x1 and  x=x2 .  
 
      Examples:  
 
    1.   y΄΄–  y΄– 2 y =  0  ⇒  a= –1,  b= –2.  The characteristic equation (6) is written:  

k2 – k – 2 = 0,  with real roots  k1=2,  k2= –1. The general solution (7) is  

y = C1 e
2x + C2 e

– x.  Assume the initial conditions y=2 and y΄= –5 when x=0. Then,  

C1= –1, C2=3 (show it!) and we get the particular solution  y = – e
2x + 3 e– x.  

 
    2.   y΄΄–  6 y΄+  9 y =  0  ⇒  a= –6,  b=9.  The characteristic equation (6) is written:  

k2 – 6 k + 9 = 0,  with real and equal roots  k1=k2=3. The general solution (8) is  

y = (C1 + C2 x) e3x.   
 
    3.   y΄΄–  4 y΄+  13 y =  0  ⇒  a= –4,  b=13. The characteristic equation (6) is written:   

k2 – 4 k +13 = 0,  with complex conjugate roots  k1=2+3i,  k2=2–3i. The general solu-

tion (9) is (with α=2,  β=3):  y = e 2x (C1 cos 3x + C2 sin 3x ). (Show that essentially the 

same result is found by making the alternative choice α=2,  β=  –3.)  

 

      3. Harmonic oscillation  
 
In a harmonic oscillation along the x-axis the total force on the oscillating body (of 
mass m) is F=  –kx (k>0), where x is the momentary displacement of the body from the 
position of equilibrium (x=0). By Newton’s second law we have that F=ma,  where a 
is the acceleration of the body:  a=d 2x/dt 2. Therefore,  
 

m d 2x / dt 2 = – kx 
 
or, setting  k/m ≡ ω

2 (where we assume that ω>0),  
 

                  x΄΄ +  ω
2
 x =  0                                                     (10) 

 
      Eq. (10) is a homogeneous linear DE of the form (5) with x in place of y and t in 
place of x (notice that the first-derivative term is missing in this case). The 
characteristic equation (6) is written: k2+ω2=0 (or, analytically, k2+0k+ω2=0), with 
complex roots k= ± iω (analytically, k1=0+iω, k2=0–iω). The general solution of (10) 
is given by (9), with α=0 and  β=ω:  
 

      x = C1 cos ωt +  C2 sin ωt                                             (11) 
 
where we assume that the constant coefficients C1 and C2 are real in order for the solu-
tion (11) to have physical meaning.  
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      The general solution (11) can be put in different but equivalent form by setting  
 

C1 =  A sin φ ,  C2 =  A cos φ  (A>0)   ⇔   A=(C1
2+C2

2)1/2 ,  tan φ=C1 /C2 . 
 
Then,  

      x =  A sin (ωt +  φ)                                                 (12) 
 
The positive constant A is called the amplitude of the oscillation, while the angle φ is 
called the initial phase (the value of the phase  ωt+φ  at time t=0). The positive con-
stant ω is the angular frequency of oscillation, to be called just “frequency” in the 
sequel.  
      Notice that, if we set  C1=A cos φ,  C2=  –A sin φ  in (11),  we will get the general 
solution of (10) in the form  
 

    x =  A cos (ωt +  φ)                                                  (13) 
 
which is equivalent to (12). Indeed, equation (13) follows directly from (12) by put-
ting  φ+(π/2)  in place of  φ (which is arbitrary anyway) in the latter equation.  
 
      4. Damped oscillation  
 
In a damped oscillation, in addition to the restoring force –kx, opposite to the dis-
placement x from the equilibrium position, there is a frictional force –λv= –λdx/dt 
(λ>0) opposite to the velocity v. The total force on the body is3 F=  –kx–λdx/dt. By 
Newton’s law,  F=m d 2x/dt 2.  Hence,   
 

m d 2x / dt 2 = – kx – λ dx/dt . 

We set  
 

k/m ≡ ω0
2 

 (ω0=  natural frequency of oscillation without damping),   λ/m ≡ 2γ, 
 
so that  

      x΄΄ +  2γ x΄ +  ω0
2 x =  0                                              (14) 

 
      Eq. (14) is a homogeneous linear DE. The characteristic equation (6) is  
 

k2 +  2γk +  ω0
2 = 0    ⇒    k = –γ ± (γ2 – ω0

2 )1/2 . 
 
We distinguish the following cases:  

      1. Large damping  ⇔  γ > ω0 .  We have two real solutions:  
 

k1 = –γ + (γ2 – ω0
2 )1/2 ,    k2 = –γ – (γ2 – ω0

2 )1/2 . 
 
The general solution of (14) is of the form (7):  
 

x = C1 e
k1t + C2 e

k2 t                                                 (15) 

                                                 
3 Note that a velocity-dependent force is not conservative. Thus, conservation of energy methods do not 
apply in this case.  
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Let us assume that C1>0 and C2>0. Given that k1<0 and k2<0 (why?) we see that  x>0 
at all times t και, moreover,  x→0 as t→∞. That is, as the time t increases, the moving 
object approaches the equilibrium position x=0 without ever crossing it. The motion is 
therefore non-oscillatory.  

      2. Critical damping  ⇔  γ = ω0 . Then,  k1=  k2 = –γ , and the general solution of 
(14) is of the form (8):  
 

x = (C1 + C2 t) ekt = (C1 + C2 t) e–γt                                     (16) 
 
If we assume that C1>0 and C2>0, we see again that  x>0 at all t and that  x→0 as t→∞. 
(For the term  t e–γt = t  / eγt we may use L’Hospital’s rule for the indeterminate form 
∞/∞; show this!) Thus, there is no oscillation in this case either.  

      3. Small damping  ⇔  γ < ω0 .  We have two complex conjugate solutions:  
 

k = –γ ± i  ω1   where   ω1 = (ω0
2 – γ

2 )1/2 . 
 
The general solution will be of the form (9), with  α=  –γ  and  β=ω1 :  
 

x = e –γt (C1 cos ω1 t +  C2 sin ω1 t
 ) , 

 
or, by setting  C1 =  A sin φ,  C2 =  A cos φ  (A>0),  
 

     x =  A e –γt sin (ω1 t +  φ
 )                                             (17) 

 
We notice that the amplitude  Ae –γt  decreases exponentially with time (Fig. 1). Thus, 
strictly speaking, damped oscillatory motion is not periodic.  
 

 
 

Fig. 1 
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      5. Forced oscillation  
 
In a forced oscillation, in addition to the restoring force –kx and the frictional force  
–λv= –λdx/dt   the body is subject to an external force of the form  
 

F(t) =  F0 sin ωf t   (F0 > 0) . 
 
The total force on the body is F=  –kx–λdx/dt+F0 sin ωf t . By Newton’s law we have 
that  
 

m d 2x / dt 2  =  – kx – λ dx/dt + F0 sin ωf t . 

We set  

k/m ≡ ω0
2 

 (ω0=  natural frequency),   λ/m ≡ 2γ,   F0 /m ≡ f0 , 

 

so that  

      x΄΄ +  2γ x΄ +  ω0
2 x =   f0 sin ωf t                                        (18) 

 
      Eq. (18) is a non-homogeneous linear DE. According to Theorem 2 of Sec. 1, its 
general solution is the sum of the general solution of the corresponding homogeneous 
equation,  

x΄΄ +  2γ x΄ +  ω0
2 x =  0 , 

 
and any particular solution of (18). For small damping (γ < ω0) the general solution of 
the homogeneous equation is given by (17):  
 

x =  A1 e –γt sin (ω1 t +  φ1
 )   where   ω1 = (ω0

2 – γ
2 )1/2 . 

 
As can be verified, a particular solution of (18) is the following:  
 

    x = A sin (ωf  t +  φ
 )                                                 (19) 

where  

        

( )
0

1 222 2 2 2
0 4

/

f f

f
A

ω ω γ ω
=

 − +  

     and   
2 2

0

2
tan f

f

γω
ϕ

ω ω
=

−
                 (20) 

 
The general solution of (18) is, therefore,  
 

     x =  A1 e –γt sin (ω1 t +  φ1
 ) + A sin (ωf  t +  φ

 )                              (21) 
 
with arbitrary A1 , φ1 . The first term on the right in (21) decreases exponentially with 
time and dies out quickly. In a steady-state situation, therefore, what remains is the 
particular solution (19):  
 

x = A sin (ωf  t +  φ
 ) . 
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      The amplitude A of oscillation is a function of the applied frequency ωf , according 
to (20). This amplitude attains a maximum value when the denominator in the first 
relation (20) becomes minimum. This occurs when  
 

       ωf  = (ω0
2 –2γ2 )1/2  ≡ ωA                                             (22) 

 
      Proof: We set  ωf  ≡ ω, for simplicity, and we consider the function  
 

Ψ(ω) = (ω2 – ω0
2)2  + 4γ2ω2 , 

 
so that  A= f0  / [Ψ(ω)]1/2.  We can show that  
 

Ψ΄(ω) = 0  for  ω  = (ω0
2 –2γ2 )1/2  = ωA   and   Ψ΄΄(ωA) = 8ωA

2 > 0 . 
 
Thus, for small damping (2γ2 < ω0

2) the function Ψ(ω) is minimum, hence the ampli-
tude A is maximum, when  ωf =ωA . This situation is called amplitude resonance.  

      In Fig. 2 it is assumed that λ1<λ2 ⇔ γ1<γ2 . This means that, in accordance with 
(22), ωA,1 > ωA,2 . In the case of no damping (λ=0 ⇔ γ=0) Eq. (22) yields ωA=ω0 . In 
other words, in an undamped forced oscillation the amplitude becomes maximum (in 
fact, infinite) when the applied frequency ωf  is equal to the natural frequency ω0  of 
oscillation.  
 

 
 

Fig. 2 
 
      By differentiating (19) we find the velocity of the oscillating body:  
 

v = dx/dt = ωf  A cos (ωf  t +  φ
 ) ≡ v0  cos (ωf  t +  φ

 ) 
 
where, by (20),  
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0
0 1 22

2
20

21 4

f /

f

f
v Aω

ω
γ

ω

= =
  
 − +     

 . 

 
The velocity amplitude v0 becomes maximum when the denominator on the right is 
minimum, which occurs for ωf =ω0 (Fig. 3). The kinetic energy mv0

2/2 then reaches 
its maximum value and there is energy resonance.  
 

 
 

Fig. 3 
 
      Note that, in contrast to amplitude resonance, the frequency ωf for energy reso-
nance is independent of the damping factor λ and is always equal to the natural fre-
quency ω0 of the oscillator. At this frequency the work supplied by the external force 
F(t) to the oscillator per unit time is maximum. That is, the oscillator absorbs the larg-
est possible power from the external agent that exerts the force F.  
      Notice also that, in the case of zero damping (λ=0 ⇔ γ=0) the velocity amplitude 
v0 becomes infinite at energy resonance, i.e., for ωf =ω0 . This rather unphysical situa-
tion is, of course, purely theoretical since a mechanical motion with no friction what-
soever is practically impossible!  
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Appendix: Amplitude dependence of period 
 
As we have shown, the general solution to the one-dimensional conservative Newto-
nian problem is  
 

      

[ ]
0

01/ 2
2

( )

x

x

dx
t t

E U x
m

±
= −

 − 
 

∫                                           (1) 

 
where the plus sign is chosen for motion in the positive direction (v>0, x>x0) while the 
minus sign applies to motion in the negative direction (v<0, x<x0).  
      Let us assume that the potential energy U(x) has the form of a U-shaped potential 
well (Fig. 1) such that U(0)=0 and U(x)>0 for x≠0. The graph of U(x) is assumed to be 
symmetric with respect to the axis x=0, which means that U(x) is an even function:  
U (–x)=U  (x).  

x

E

O

U

A− A+  
Fig. 1 

 
      If E is the total mechanical energy of the particle, then, according to Fig. 1, the 
motion is bounded between the points –A and +A of the x-axis, which are turning 
points at which the particle stops momentarily. Since E is constant, its value at all 
points equals its value at the turning points; i.e.,  
 

        E = U (± A)                                                         (2) 
 
      The time it takes for a complete journey from –A to +A and back to –A is found by 
using (1) with the appropriate sign for each direction of motion:  
 

1/ 2 1/ 2{ } { }

A A

A A

dx dx
P

−

−

−
= + ⇒∫ ∫

⋯ ⋯

 

 

        

[ ]
( ) [ ] 1/ 21/ 2

1/ 2
2 2 ( )

2
( )

A A

A A

dx
P m E U x dx

E U x
m

−

− −
= = −

 − 
 

∫ ∫                    (3) 

 
Since P is fixed for a given A, the motion is periodic about the point x=0, with ampli-
tude equal to A and with period P. It follows from (2) and (3) that the period P de-
pends on A and thus on the total energy E of the particle. We will now show that an 
exception where P does not depend on A (thus on E also) is simple harmonic motion.  
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      Since U(x) is an even function with U(0)=0, it can be expanded into a Maclaurin 
series of the form  

         2

1

( ) l
l

l

U x a x
∞

=

=∑                                                    (4) 

 
where the coefficients al are not necessarily all different from zero. From (2) we have  
 

2

1

( ) l
l

l

E U A a A
∞

=

= ± =∑  

so that    

( )2 2

1

( ) l l
l

l

E U x a A x
∞

=

− = −∑ . 

Equation (3) then yields  

( ) ( )
1/ 2

1/ 2 2 2

1

2
A l l

lA
l

P m a A x dx
−∞

−
=

 
= − 

 
∑∫ . 

 
By setting  x/A=u  ⇔  x=Au , we get:  
 

( ) ( )
1/ 2

11/ 2 2 2

1
1

2 1l l
l

l

P m A a A u du
−∞

−
=

 
= − 

 
∑∫                                (5) 

 
      It is obvious that, in general, P depends on A. The only exception where P is not 
dependent on A is the case where the following condition is satisfied: al =0 for l  ≠1. 
That is, the only nonvanishing coefficient al in the series (4) is a1 . By setting  a1 =  k/2 

the potential energy (4) reduces to U(x) = kx2/2 , which corresponds to a restoring 
force of the form  

F (x) =  – dU / dx =  – kx                                                (6) 
 
The periodic motion is then simple harmonic motion (SHM) and the period (5) re-
duces to  

( ) [ ]
1/ 21 11/ 2 2 1/ 2

11

1/ 2

2( / ) 1 2( / ) arcsin

2( / )
2 2

P m k u du m k u

m k
π π

−

−−
= − =

  = − − ⇒    

∫
 

1/ 2
2

2
m

P
k

π
π

ω
 = ≡ 
 

    where    
1/ 2

2 k

P m

π
ω  = =  

 
. 

 
We notice that the period of SHM is amplitude-independent, hence also energy-
independent.  
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      It is of interest to examine a one-dimensional periodic motion that follows a 
curved path (where by “one-dimensional” we now mean that a single generalized co-
ordinate – such as, e.g., an angle or a distance along the curve – is needed in order to 
specify the location of the particle). A nice example is that of an oscillating pendulum 
(Fig. 2; see also Sec. 5.5 and Problem 25 of [1]). The position of the mass m is speci-
fied by the arc length OA=s=lθ or, equivalently, by the angle θ (in rad). The algebraic 
value of the velocity of m is  v=ds/dt=ldθ/dt ; it may be positive or negative, depend-
ing on the direction of motion relative to the unit tangent vector ̂Tu .  

 

•

O

l

θ

θ
s

A

f
�

w
�

ˆTu

m

Tw
�

Nw
�

 
Fig. 2 

 
      The motion is governed by the tangential component wT =  – mg sinθ (algebraic 
value) of the weight w. The tangential equation of motion of m is  
 

       m dv / dt = – mg sinθ    ⇒    dv / dt = – g sinθ                              (7) 
 
We seek a conserved quantity that associates the velocity v with the position θ. We 
could, of course, work with (7) directly, but there is an easier way; namely, conserva-
tion of mechanical energy. This principle may be applied in view of the fact that the 
mass m is subject to the conservative force of gravity and the tension f of the string 
which, being normal to the velocity, produces no work (cf. Sec. 4.5 of [1]). The poten-
tial energy of m at point A (Fig. 2) is  
 

U(θ) = mg (l – l cosθ) = mgl (1 – cosθ) , 
 
where we have assumed that U(0)=0 (i.e., U is zero at the lowest point O). If α is the 
angular amplitude of oscillation (i.e., the maximum angle of deflection of the string 
from the vertical) then at θ=  ±α the kinetic energy T vanishes and the total mechanical 
energy E is equal to U(±α). Applying conservation of mechanical energy between an 
arbitrary angle θ and the maximum angle  θ=α , we have:  
 

m v2 / 2 + mgl (1 – cosθ) = 0 + mgl (1 – cosα)   ⇒  (after eliminating m) 
 

         v2 = 2gl (cosθ – cosα)                                               (8) 
 
    Exercise: By differentiating (8) with respect to t and by using the fact that v=ldθ/dt, 
recover the equation of motion (7). Conversely, show that (8) is a direct consequence 
of (7). [Hint: Multiply (7) by v.]  
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      Setting   v=ldθ/dt   in (8), we get a first-order differential equation:  
 

dθ / dt = ± [(2g/l ) (cosθ – cosα)]1/2 , 
 
which is integrated to give  

0

1/ 2

0
2

(cos cos )
g

d t t
l

θ

θ
θ α θ

−
 ± − = −  ∫  . 

 
The period of oscillation is [cf. Eq. (3)]  
 

       

1/ 2

1/ 2 1/ 2

2
2 (cos cos )

(2 / ) (cos cos )

g
P d

l

l g d

α

α

α

α

θ α θ

θ α θ

−

−

−

−

 = −  

= −

∫

∫
                                  (9) 

 
Obviously, P depends on the angular amplitude α . Let us assume, however, that this 
amplitude is very small: α <<1. We may then make the approximations  
 

cosθ ≈ 1 – θ 
2/2    and    cosα ≈ 1 – α2/2 . 

 
Furthermore, we set  θ/α=u ⇔ θ=αu . It is then a straightforward exercise to show that 
(9) reduces to  

( ) [ ]
1/ 21 11/ 2 2 1/ 2

11

1/ 2

2( / ) 1 2( / ) arcsin

2( / )
2 2

P l g u du l g u

l g
π π

−

−−
= − =

  = − − ⇒    

∫
 

 
P = 2 π (l /g )1/2 , 

 
which is the familiar expression for the period of oscillation of a pendulum executing 
simple harmonic motion for small angles of deflection from the vertical. Once again, 
the SHM is seen to be the only one-dimensional periodic motion in which the period 
does not depend on the amplitude of oscillation.  
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