Oscillatory motion on aroller-coaster track
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Problem

A body of massn is moving back and forth on a U-shaped, frictissleoller-coaster
track on the verticatyplane, where th&-axis is horizontal while thg-axis is verti-
cal (Fig. 1). The shape of the track, which is syt with respect to thg-axis, is
described mathematically by an equation of the forh (x), wheref (X) is aneven
function and wheré (0)=0. @) Find the differential equation describing the ipos

of mon the track as a function of timé) Propose a solution to this equation in inte-
gral form. €) Determine the period of the oscillatory motioivem the total mechani-
cal energ\E of m (equivalently, the maximum heighteached by the body).
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Solution

Let us first take a look at the physics of the pgob The bodym is sliding without
friction on a roller-coaster track described by #wiationy=f (x), moving back and
forth between two extreme points at heighdbove thex-axis (Fig. 1). The projec-
tions of these points on this axis ar& and+A. The body is subject to the gravita-
tional forcemg and the normal force from the track. The lattexcéoproduces no
work, hence does not affect the conservation ofnaeical energy (see, e.g., Sec. 4.5
of [1]). The gravitational potential energy wfis U(y)=mgy. Along the track, where
y=f (X), the values o) may be expressed in termsxof

U (x) = mg f(x) (1)
Let E be the total mechanical energymafSinceE is constant along the path, its value

will be equal to the value of the potential eneatjyhe extreme positions correspond-
ing tox=—A andx=+A (at which positions the kinetic energyrofvanishes). That is,

E=U(@A) =mg f(xA) = mgh (2)
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The kinetic energy of the body is
1 1 /.5 .
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(dots indicate differentiation with respecttjavhere, fory=f (x),
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Hence,
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The total mechanical ener§=T+U is constant along the path. By (1), (2) and (4) we
have:

%mxz{u[ f(3)°}+ mg{ x= mg 5)

The position ofm on the track is specified by a single coordinateshich plays the
role of a generalized coordinate in the sense gfdragian dynamics. The Lagrangian
function is

L(x 8= T-U=2 m# L[ 13- mg X 6)

The Lagrange equation faft) is
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We note that the time-derivative afy function ofx is defined by the rule used in (3)
for f(x). With this in mind, it is a somewhat long butasghtforward exercise to show
that (6) and (7) yield the differential equation

{1+ [T} + 2 () () + gf( x=0 (8)

Presumably, the first-order differential equati&), (expressing conservation of me-
chanical energy, is #rst integral of the second-order differential equation (8). [In
general, a first integral of a differential equatis a lower-order differential equation
(or an algebraic relation, in the case of a firsteo equation) that gives us the infor-
mation that some mathematical quantity retainsrestamt value as a consequence of
the original differential equation. See, e.g., Gha&pand 4 of [2].]

To prove the validity of the above statement, wedn® integrate (8) once in order to
derive (5). It is easier, however, to work in resesiorder. We thus take the time-
derivative of (5), keeping the rule (3) in mind. tNirprisingly, the result is again the
differential equation (8) (show this)!



The equation of motion ah on the track is a functiox(t) that satisfies the differen-

tial equation (8). In principle, this second-ord=guation has “already” been inte-
grated once to obtain the first-order equation[{®)ich is a first integral of (8), ex-

pressing conservation of mechanical energy]. Fighwe have:
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This yields a first-order differential equation #dt):

1/2
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dt _i{ 1+[f/(x)]° } = HAbaD ®

By assuming the initial conditior=x, for t=ty, the differential equation (9) is inte-
grated to give
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where the plus sign is chosen for motion in theitp@sdirection &>xg), while the
minus sign applies to motion in the negative diogc{x<xp). This formally solves the
problem of determining the position wfon the track as a function of time.

The periodP of the oscillatory motion afn is the time it takes for a complete journey
from the extreme position witk= —A to the extreme position witke +A and back to
the original positiorx= —A. To find P we use (10) with the appropriate sign for each
direction of motion:

PZIA dx +J'*A —dx :ZIA dx .
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We observe thaP depends on the maximum heidghtthus on the total enerdy of
the body (notice that both the integrasad the limits of integration depend dn).

However,P is independent of the mass of the body, as exgdorea motion gov-
erned by the sole action of gravity.
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