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1. Occupation density and density of states

We consider a quantum system consisting of a langeber of identical particles. We
assume that the energy of each particle may taleeain values, E», E3, ..., char-
acteristic for this system. We say that each gdartitayoccupyone of the available
energy levels:, E», E3, ..., of the system. We also assume that the systeopmsc
unit volume Hence, all physical quantities concerning thistey will be specified
per unit volume At some instant the particles are distributedhi® various energy
levels so that; particles (per unit volume) occupy the leig(which means that each
of thesen; particles has enerdy), as seen in Fig. 1.
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. ! Fig. 1
The total number of particles in the systeraqual to
n=>n 1)
while the total energy of the syster is

U= Zni E| (2

The ordered setn{, n, nz ...) = (n) constitutes apartition and defines a
microstateof the system, compatible with the macroscopitestietermined by the
numbern of particles, the total enerdy, etc. By the expression (2) we implicitly as-
sume that the particles do not interact (or, astledo not interact too strongly) with
one another, so that we may define an average \essegparately for each particle.
This is approximately true for the molecules ofaldgases, as well as for the free
electrons in metals.
If the system issolated (i.e., does not exchange matter or energy wittsuts

roundings) then andU are constant. However, Eqgs. (1) and (2) do natrdehe the
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partition () uniquely, given that different partitiong), (n;"), (n"’), etc, may corre-
spond to the same valuesrodndU. Now, for givenn andU there is anost probable
partition (microstate). When the system is in thi@te of maximum probability we
say that it is irstatistical equilibrium(in thermodynamics the terthermal equilib-
rium is used). When an isolated system reaches a aftatttistical equilibrium it
tends to remain in that state — unless, of coutse,disturbed by some external ac-
tion. Furthermore, in a state of equilibrium thesteyn has a well-defined, constant
temperaturel. As a rule,we will always assume that the systems we conaigein
statistical equilibrium

Assume now that the particles in the systewelenergies that vagpntinuously
from E; to E; (E1 < E<E,) instead of taking on discrete valuesE,, Es,... This is the
case for the free electrons in a metal — theirgrasrvarying continuously within the
limits of the conduction band — as well as for thelecules of an ideal gas that occu-
pies a large volume. In this case there is anitefinumber of energy levels varying
between the limit valuek; andE, . The distribution of the particles of the system
among these levels is now described with the aid fainctionn(E), to be called the
occupation densitydefined as follows:

The product (E)dE represents the number of particles, per unit volume
whose energies have values between E and E+dE

One may say that the occupation dens(y) expresses thdistribution of energyn
the system. More accurately, for a given valuef the energy, the corresponding
value n(E) describes the “tendency” of the particles in slystem to occupy energy
levels in the vicinity ofE: a largem(E) means a larger number of particles in the en-
ergy region betweek andE+dE.

The total numben of particles in the system, per unit volume, isado

n:IEEZn(E)dE (3)

In the case of metals, represents the concentration of free electronsifran of free
electrons per unit volume); that is, thlectronic densityf the metal.

The quantum state of a particle in the systedescribed with the aid of a set of
quantum numbers, characteristic of the particuiad lof system. In general, to every
valueE of the energy (that is, to every energy levelyeheorrespond many different
quantum states. Some of them will be occupied btighes while others will be va-
cant. In a manner similar to the definition of thecupation densitn(E), we define
thedensity of state¥(E) as follows:

The product KE)dE represents the number of states, per unit voluminef
system, whose energies have values between E aitel E+

Like the occupation density, the density of stagesnly defined if the energies of the
particles vary in a continuous manner. It is albwious that we cannot expect to find
any particles in an energy region where there arallowable quantum states. There-
fore, n(E)=0 whenN(E)=0. The converse igot true, given that there may exist al-
lowable energy regions where all states are vaghistis, e.g., the case with the up-
per part of the conduction band of a metal).
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2. Theideal gas

An important problem in statistical physics is ftstribution of energy in ardeal
monatomic gasSince every gas molecule consists of a singlenaits energy is
purely translational kinetic(there is no intermolecular potential energy, reothere
the rotational or the vibrational kinetic energpital of a composite molecule). The
molecular energy levels are thus given by theimdf= ¥2my?, wheremis the mass
of a molecule and wheng are the possible values of the velocity of the enoles.
For given physical conditions, each lewglis occupied by all molecules having a
common speed .

The gas is a quantum system confined withenlimited space of its container.
According to quantum mechanics, the energy of tbeeaules is quantized and there-
fore thev; andE; take on discrete values, as suggested by thefuke adexi. But,
when the volumé/ occupied by the gas is large, we can approximassume that
the molecular kinetic energg= ¥ mV is not quantized but varies incantinuous
fashion. The energy distribution in the systemrdfae, involves the concepts of oc-
cupation density and density of states, definedha previous section. As can be
shown [1,2], the density of states is given byekpressiof

N(E) :i_Z(Zm)SIZ El/2 (4)

Regarding the occupation densif), we recall that it is defined by demanding
that the produch(E)dE represents the number of molecules, per unit ve|umaving
energies betwee andE+dE. As is found [1,2], when the gas is in statistiequilib-
rium,

27N 1/2 E /KT

n( E) = (7Z'kT)3/2

()

wheren is the concentration of the molecules (number ofecules per unit volume)
andT is the absolute temperature. Note tiegre is no limit to the number of mole-
cules that can occupy a given quantum stéteother words, the molecules of the
ideal gas do not obey tiauli exclusion principle

Theaverage(kinetic energyof the molecules at temperattres given by [1,2]

U)=SkT (6)

The constank appearing in Egs. (3.5) and (3.6) is called Bloétzmann constardnd
is equal to

k=8.62x 10°eV /K= 1.3& 13° J K (7)

* Since the energ¥ is purely kinetic, we have th&> 0; thus the presence Bfinside a square root is
acceptable.
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If N is the total number of molecules in the gas, tial energy of the system is equal
to N(U). Thus, ifV is the volume occupied by the gas, tbial energy per unit vol-

umeof the system is
N
U=—(U)=n(U)== nkT (8)

Notice that, according to (6),

the absolute temperature T of an ideal gas is asmenof the average kinetic
energy of the molecules in a state of statistigalildorium.

In particular,the kinetic energy of the molecules vanishes ablates zero(T=0). As
we will see in Sec. 4, an analogous statemenbisvalid for the free electrons in a
metal, despite the superficial similarities of thger system with the molecules of an
ideal gas.

3. Bosons and fermions

The Maxwell-Boltzmann theorfor an ideal gas, outlined in the previous segtisn
essentially aclassicaltheory. Although we regarded the gas moleculeguasitum
particles (for example, we assumed that they ocouantum states) the underlying
analysis in essence treats the molecules as dhgpsicicles since it does not take into
account one of the most important principles ofrquan theory; namely, thencer-
tainty principle [Don’'t be deceived by the presence of the quartanstant in Eq.
(4); the basic result (5) for the occupation dgnsitly be derived by entirely classical
methods, without recourse to quantum mechanicsch&n omission of quantum
principles is not allowable in the case of elecstogiven their exceedingly micro-
scopic nature in comparison to gas molecules. idarent of such profoundly quan-
tum problems is the subject of quantum statistics.

In quantum statisticgjentical particles thatnteract with one another are consid-
eredindistinguishable By “identical particles” we mean patrticles thaayrreplace
one another without any observable effects in tlaeroscopic state of the system.
(For example, the free electrons in a metal aretida&l particles since it doesn’t mat-
ter whichindividual electrons occupy an energy level; ityomattershow manyelec-
trons occupy that level.) In classical mechanidsens the notion of the trajectory of a
particle is physically meaningful, it is possibte distinguish identical particles that
interact by simply following the path of each pelgiin the course of an experiment.
We say that classical particles afistinguishable This is the view adopted by the
Maxwell-Boltzmann theory for the molecules of idgakes.

Things are not that simple, however, for eyst of extremely microscopic parti-
cles such as, e.g., the electrons in a metal, ghatithe uncertainty principle does not
allow a precise knowledge of the trajectories ofhspurely quantum particles (in
quantum theory the notion of the trajectory is niegless). Therefore, whedentical
quantum particles interact with one another, impossible to distinguish one from
another during an experiment. We say that intargdtientical particles anadistin-
guishable (Identical particles that doot interact are considered distinguishable.)

Thus, quantum statistics is the enhancemetiteocorresponding classical theory
by taking into account the implications of the utamty principle. According to the
quantum theory, there are two kinds of fundamepaiicles in Nature, which follow
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separate statistical laws of distribution of enaendyen they are grouped to form sys-
tems of identical and indistinguishable particles:

e the particles that obey the Pauli exclusion prilecigre calledfermionsand
they follow theFermi-Dirac distribution lawy

e the particles that daot obey the Pauli exclusion principle are calteasons
and they follow thé8ose-Einstein distribution law

(see discussion in Appendix A). As has been observe

particles having half-integer spin&.g., electronsare fermionswhile parti-
cles with integral spinée.g., photonsare bosons.

Accordingly,

two or more identical fermions may notcupy the same quantum state in a
systemwhereasan arbitrary number of identical bosons magcupy the same
quantum state.

Given that even the molecules of ideal gagesquantum systems consisting of
various kinds of fermions (electrons, protons, remg, not to mention quarks!) we
may wonder whether the Maxwell-Boltzmann distribatiaw has any use after all.
Well, what keeps the classical theory in the gasntte fact thatior systems in which
the uncertainty principle can be ignoredoth Fermi-Dirac and Bose-Einstein statis-
tics reduce to Maxwell-Boltzmann statistics. Suckeai-classical system is an ideal
gas of low density (i.e., having a small concerdrabf molecules) at a high tempera-
ture. In this case quantum effects are not sigamfi@nd the use of classical statistical
methods leads to correct physical predictions.

4. Fermi-Dirac distribution law for a metal

Fermi-Dirac statistics applies to systems of idsitiand indistinguishable particles
that obey the Pauli exclusion principle; that ssystems ofermions The free elec-
trons in a metal are an important example of susiisteem. Although the energies of
the electrons are quantized, we may approximatggrd these energies as varying
continuously within the limits of the conductionnol This approximation is valid
when the volume of space within which the motionhaf electrons takes place is rela-
tively large (a similar condition is valid for tmeolecules of an ideal gas).

The mobile electrons in a metal are caffeé because of their ability to move in
between the positive ions without being subjedbtoes of appreciable strength (ex-
cept, of course, when the electrons accidentalljdeowith the ions). In general, a
free particle has constant potential energy that amhitrarily be assigned zero value.
The energ\E of a free electron is thymurely kinetic which means thd&> 0. We will
therefore assume that the energy of a free eleatrtme metal may take on all values
from O up to +o. (The upper limit is, of course, purely theoretisiace the energy of
an electron in the interior of a metal may not extthework functionof that metal,
equal to the minimum energy required in order thatelectron may “escape” from
the crystal.)

Let N(E) be the density of states in the conduction banthe metal. We recall
that this function is defined so that the prodN€E)dE is equal to the number of



C. J. Papachristou

quantum states (per unit volume) with energies betviE and E+dE (equivalently,
equal to the number of states belonging to all gnésvels betweel andE+dE in
the conduction band). As can be shown [1-5] thetion N(E) is given by the expres-
sion

N(E):?"]_Z(Zm)S/Z El/257/ El/2 (9)

wherem is the mass of the electron. By comparing (9) withwe observe that the
density of states for the electrons in a metalvisd that for the molecules of an ideal
gas. This is due to the two possible orientationthe electron spin, that is, the two
possible values of the quantum numirg = +%2). This consideration does not appear
in the Maxwell-Boltzmann distribution since the sdacal theory does not take into
account purely quantum concepts such as that afgimeof a particle.

To find the distribution of energy for thedr electrons in a metal we must deter-
mine the occupation densitfE). As we know, this function is defined so that the
productn(E)dE represents the number of free electrons (pervahitme of the metal)
with energies betweel andE+dE (equivalently, the number of electrons occupying
the energy levels betweé&handE+dE in the conduction band). Because of the Pauli
exclusion principle, the number of electrons irstbiementary energy interval cannot
exceed the number of available quantum statesainrterval:

n(E)
n(E)dE< N( B dE = Osﬁsl

We observe that the quotien{E)/N(E) satisfies the necessary conditions in order to
represent probability (see Appendix B). We thusrdetheprobability functionf (E):

f(E)=% & nB=f(BNB (10)

The functionf (E) represents th&action of states of energy E that are occupigd b
electronsor, equivalently, th@ccupation probabilityor any state of enerdy.

The analytical expression f6(E) is given by the=ermi-Dirac distribution func-
tion

1

f(E) Ty gE B (11)

whereT is the absolute temperatuteis the Boltzmann constant (7), aBd is a pa-
rameter called th&ermi energy(or Fermi leve] on an energy-level diagram) for the
considered metal. We note that, although the ptedisoussion concerns free elec-
trons in metals, the expression (11) is generallidvor all systems of fermions.

By combining (10), (11) and (9) we can nowtgvan expression for the occupa-
tion densityn(E), which quantity determines the distribution ofergy for the free
electrons in the metal:

n(E)= F(EIN(B =Lty (12)
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The physical significance of the Fermi endggycan be deduced from (11) after
making the following mathematical observations:

. ForT—0,  lim [e(E’EF)”‘T}z{ o ESEEFF
. ForT>0, €55/ =1 when E=Er
Therefore,
fof=0 = f(E):{f” e (13)
while
foT>0 = f(EF):% (14)

These are physically interpreted as follows:

1. ForT=0, all states with energids<Ef (i.e., all states up to the Fermi level)
areoccupiedby electrons, whilall states withE>Er areempty

2. ForT >0, half the states with enerdy=Er are occupied. That is, the occupa-
tion probability of any state on thermi levelis equal to 50%.

We notice that the functidnE) is non-continuous foE=Er whenT=0. Hence,
the occupation probability on the Fermi level isleterminate forT=0. Figure 2
shows the graph of (E) for T= 0 andT > 0. A diagram of this form applies, in gen-
eral, toany system of fermions (not just to free electronmigtals).

f(E)
y~T=0
1.0
05\ 150
E
EF

Fig. 2

As we saw, the Fermi ener@y places an upper limit to the energies of the free
electrons in a metal 8t=0. Since the energy of a free electron is purehetc, we
can write:

Er = (Exinetid max for T=0 (15)
That is,

the Fermi energy of a metal represents the maxikingtic energy of the free
electrons at absolute ze(@'= 0).
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Therefore, alf=0, all quantum states in the conduction band ranfyom the lowest
energy leveE=0 up to the Fermi levet=Ef are occupied by the free electrons, while
all states abovEr are empty. The diagram in Fig. 3 shows the comolidtand of the
metal forT=0.

E

vacant level

},/
}

E=0 ™~ fully occupied levels

Fig. 3

We notice a fundamental difference of thenkddirac theory for electrons from
the classical theory for ideal gases. Accordinghto latter theory, all gas molecules
must have zero (kinetic) energy at absolute zeroth@ other hand, at=0 the free
electrons in a metal have (kinetic) energies ram@iom zero up to the Fermi energy.
This occurs because the electrons, being fermmmsy the Pauli exclusion principle
which does not allow all of them to occupy the Istvenergy leveE=0, given that
this level does not possess a sufficient numbeuahtum states to accommodate all
electrons. At temperaturéb>0, however, by receiving thermal energy, some free
electrons acquire (kinetic) energies greater tBanThese electrons then occupy en-
ergy levels above the Fermi level within the corurc band. As we saw, on the
Fermi level itselhalf the available quantum states are occupied 0.

We now describe a method for determiningRbemi energyEr of the system of
mobile electrons in a metal. Latbe theelectronic densityof the metal (number of
free electrons per unit volume) and IKE) be the occupation density of the Fermi-
Dirac distribution. These two quantities are reddig Eq. (3):

n:jEEzn(E)dE:j:dBdE (16)

where here we have pk{=0 andE,=+ « (a purely theoretical limit, of course!). Us-
ing the expression (12) fox(E), we have:

El/2
e (17)

If we could compute the integral in (17) analytigathe only thing to do would be to
solve the result foEr and thus express the Fermi energy as a functionasfd T.
Since, however, handling the above integral isamoeasy task, we will restrict our-
selves to something much easier; namely, we willeateEr for the special case
whereT=0. From (10), (9) and (13) we have that, at thisgerature,

0, E>E
n(E)= f(E) N(B = (18)
yEY?, 0<E<E
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Substituting (18) into (16), we find

nzj:Fn(E)dE+j: B dIZ:j:Fy B2 480 =

2
n=57E (19)
so that
3[’] 2/3
E. = (_j (20)
2y

We observe that the Fermi energy of the mat@iEO0 depends only on the con-
centrationn of free electrons and is independent of the dinoessof the crystal (i.e.,
of the total number of ions). As can be proven (d¢eSec. 9-3) the value @& that
we have found does not change much at higher tetyes. Thus, although derived
for T=0, relation (20) will be assumed valior all T. Typical values oEr for metals
range from abouBeV to 12eV.

5. Fermi-Dirac distribution for an intrinsic semiconductor

In anintrinsic semiconductor [3-5] (i.e., one without impuritiesg electronic system
of interest consists of the valence electrons efdtoms; specifically, the electrons
that participate in covalent bonds as well as tltbatare free. In terms of energy, the
aforementioned two groups of electrons belong &ovtdience bandand theconduc-
tion band respectively. The distribution of electrons withime allowable energy
states is determined by the occupation demgk), which is related to the density of
stated\(E) and the probability functioh(E) by

n(E) = f (E) N(E) (21)
As we know, the product(E)dE represents the number of electrons, per unit velum
of the material, with energies betweemandE+dE.

The form of the functioN(E), analogous to the expression (9) for metals, clépe
on the energy region within which this functiordefined [3-5] (see Fig. 4):

Ec-

E

e

E,

Fig. 4

a. In theconduction band

N(E)=7(E- E)"*, E2E (22)
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b. In thevalence band
N(E)=y(E, - B"*, E<Eg (23)

c. In theforbidden bandof a pure semiconductor there are no allowable tyman
states; therefore,

N E(=) 0,E <E<E (24)
The probability function for the electrongyisen by the Fermi-Dirac formula:

1

whereE admits values in the above-mentioned three enegipns. We would now
like to find the probability functiofi,(E) for theholesin the valence band of a semi-
conductor. We think as follows: A quantum stateratenergy levekE in the valence
band is either occupied by an electron or “occupi®da hole. Iff (E) andf,(E) are
the corresponding occupation probabilities, then

fE)+LE)=1 < f{HE)=1-FE) (26)
Substituting the expression (25) fofE), we find that

(E-Ee)/KT

E-E.)/ KT

f (E)=
() 1+ €l

(27)

Physically, the functiorf,(E) represents the fraction of states of eneéfdiat arenot
occupied by electrons, or, equivalently, the prdigtof non-occupation of a state of

energyE.

6. Fermi energy in semiconductors

The Fermi energy of amtrinsic semiconductor [3-5] is given by Eq. (28), where th
energy level&€y andEc were introduced in the previous section (see $ig.

E

10
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g - rE (28)
2
We write:
EF:EV+(E2V+EG):EV+% (29)

This means that

the Fermi level of an intrinsic semiconductor isdted at the center of the
forbidden band.

FurthermoreFEr is independent of temperatyras well as independent of the dimen-
sions of the crystal (that is, of the number ohataon the lattice).

How should we interpret the presenceepfinside the forbidden band of a pure
semiconductor? Must we conclude that thsyafter all, some allowable energy level
in an energy region that we normally consider ieastble to the electrons? No! Gen-
erally speaking, the Fermi enerBy is only a parameter of the Fermi-Dirac distribu-
tion law anddoes not necessarily represent an allowable enérggl for the elec-
trons That is, the Fermi level may or may not contdloveable quantum states. In
metals,Er is an allowable energy level since it is locateside the conduction band.
This is not the case for intrinsic semiconductarsere the Fermi level is located in-
side the forbidden band.

We note that the presence of the Fermi IByehside the forbidden band is con-
sistent with the general physical interpretationtted Fermi energy given in Sec. 4.
Let us explain why:

@ ForT>0 we know that(EF)=1/2. That is, half the states of the Fermi level ar
occupied by electrons. In our case, however, thel Ig- is located inside the forbid-
den band; hence it may not possess allowable gueastiates. Thus on the Fermi level
we have the following situation:

¥ 0 states= O electrons

which is reasonable, given that no energy levetlsghe forbidden band of antrin-
sic semiconductor may contain electrons.

©) For T=0, all allowableenergy levels belovtr are completely filled while all
allowable levels aboveEr are empty. But, allowable levels immediately belamd
aboveEr exist in the valence and the conduction band,ewsgely. Hence, all levels
in the valence band are fully occupied by the atowailence electrons, while no en-
ergy level within the conduction band contains etets. Physically this means that,
for T=0, all covalent bonds are intact and there arge®mélectrons in the crystal.

The fact that the lev&k is at the center of the forbidden band reflecdgrametry
between electrons and holes in an intrinsic sendigotor, their concentrationsand
p being equal to each other and equal to the intro@ncentratiom; :

n=p=n (pure semiconductor) (30)

11
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In a sense, the Fermi level “keeps equal distanitest the energy bands occupied by
free electrons and holes, the two charge carriersgbequally important in an intrin-
sic semiconductor.

The Fermi level of a pure semiconductor il affected if we dope the crystal
with impurities. The doping will spoil the electrtile balance expressed by Eqg.
(30). In ann-type semiconductor the majority carriers are tleetebns in the conduc-
tion band, while in g-type semiconductor the majority carriers are thiedhian the
valence band. The Fermi level will then shdtvard the band occupied by the major-
ity carriers in each case. Thus, in amtype semiconductor the Fermi level moves
closer to the conduction band, while ip#ype semiconductor it moves closer to the
valence band, as shown in Fig. 6.

E
EC - EC -
Ep——— -
S E
E, F
~ ~
n- type p- type Fig. 6

In contrast to an intrinsic semiconductorevdEr is independent of temperature
(the Fermi level always lies at the center of tbeidden band), in doped semicon-
ductorsEr changes with temperature. Specifically, TasicreaseskEr movestoward
the center of the forbidden band@his happens because, by the increase of tempera-
ture more and more covalent bonds are “broken’hen drystal, which results in an
increase of concentration of intrinsic carrierstfbelectrons and holes) relative to the
carriers contributed by the impurity atoms. Theaamirations of electrons and holes
thus progressively become equal and the semicomdterids to return to its intrinsic
state, with a simultaneous shift of the Fermi letesvard the middle of the energy
gap. Conversely, a$—0, the Fermi leveEr passesabovethe donor leveEp for
n-type doping, obelowthe acceptor leveta for p-type doping.

The value oEr also depends on the concentration of impurity atoAdding
more donor (acceptor) atoms in atlype (-type) semiconductor results in a further
shift of the Fermi level toward the conduction @rade) band. In cases of extremely
high doping, i.e., foNp>10" donor atom#nt or Na>10™ acceptor atomsnt, the
Fermi level may even move into the conduction bandhe valence band, respec-
tively!

Appendix A. Symmetry propertiesof boson and fermion wavefunctions

As mentioned in Sec. 3, in quantum statistics glagiare regarded &entical and
indistinguishable Regarding the latter property, we note that iarqum mechanics
the finite size and the spreading of wave packeds describe individual particles
make it impossible to distinguish between identjgaiticles that interact with each
other to an appreciable extent, in which case thaire packets overlap significantly.
Hence, interacting identical particles are treagdhdistinguishable.

12



The physical meaning of Fermi-Dirac statistics

Consider a pair of identical particles — ¢h#m 1 and 2 — and denote Hy1,2)
the wavefunction of this system, where the notaitmalicates that particle 1 occupies
the “first’ quantum state while particle 2 occupths ‘second’ state, each state being
characterized by a certain set of quantum numibd&e;, a physical quantity such as
the probability density is determined by the reamnbination¥*¥=|¥[. Since the
particles are identical, thghysicalstate of the system should not be altered by-inter
changing the particles. Thus we require tH41]2)f = ¢(2,1)f = ¥(1,2F1¥(2,1),
where/ is (generally) complex angl$1.

Sincel is a property of the wavefunction, independenthefidentity of the parti-
cles occupying the given states, we could equadi} write ¥(2,1=1¥(1,2). There-
fore,

¥(1,2)= A¥(2,1) =A[A¥(1,2)] =A2¥(1,2) = *=1

so thatl=+1. This means tha¥(1,2=+¥(2,1). Two situations are possible regarding
the symmetry property of the wavefunction and tbheresponding identity of the
quantum particles:

¥(1,2) =¥(2,1) < even symmetrig wavefunction< bosons

¥(1,2) =-¥(2,1) & odd @ntisymmetrig wavefunction< fermions

Consider now two identical particles 1 an@2well as two one-particle staies
and yy, available for these particles. If the particles distinguishable then it makes
sense to tell with certainty which particle is mate y, and which is in statey, . Ac-
cording to quantum mechanics the wave functioefsystem will be either

¥(1,2) =pa(1) o (2)

¥(1,2) =ya(2) yu (1)
(provided that the particles do not interact taorggly). But, if the particles anedis-
tinguishable we cannot say which particle is in which statke Tvavefunction must
therefore reflect this indeterminacy by allowing &l possible situations. Fadenti-
cal bosonghe (normalized) wavefunction of the system issyimmetriccombination
1
YL2D= 7 [va Wy @rya @0, =Y (21 (A1)

or

while for identical fermionsthe wavefunction of the system is thatisymmetric
combination

w(, 2)=% [Va Wy (s (@, @] = - ¥ (2,1 (A-2)

Note in particular thaivo identical fermions cannot occupy the same guant
state which statement constitutes tRauli exclusion principlelndeed, ify, =y, then
the fermion wavefunction (A.2) is equal #(1,2)=0= |¥(1,2)f =0, so that the prob-
ability density for this configuration is zero. Theson wavefunction (A.1), on the
other hand, is nonzero far, =y, , which reflects the fact that ambitrary number of
identical bosons can occupy the same quantum|&iate
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Appendix B. Occupation probability for fermion states

In Sec. 4 we took it for granted that the fractodrstates of energy that are occupied
by electrons equals the occupation probabilityaioy state of energy. We will now
verify the validity of this statement.

As can be shown (see, e.g., [1]) the numlbevays of distributingn identical
fermions inN quantum states of energy(n<N) is given by

NI
" ni(N=D!

(Remember that, by the Pauli exclusion princiglach state can accommodate at
most one particlg In particular, fom=1 andn=N we haveQ;n =N andQun =1, re-
spectively.

We want to find the probability that any givstate of energg will be occupied
by a particle. The number of distributions in whitis state is occupied equals the
number of ways the remaining-L) particles can be distributed in the remaining
(N-1) states. That is,

Qn,N

(N -1)! _ (N-D)!
(N-D![(N-1)—(n-D]! (n-1)!( N- n!

Qn—l,N—l =

The occupation probability for that state is then

_ number of distributions with given state occupieél>

P
total number of distributions

p. Qe nt (N-DU 1

Qv (N=1! NI N

P= % = fraction of states of enerdy that aczopied

In particular, fom=1 andn=N we haveP=1/N and P=1, respectively.
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