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The concept of a Backlund transformation (BT) isdduced. Certain applica-
tions of BTs — both older and more recent ones-decussed.

1. Introduction

Given a difficult problem in mathematics we alw#&ysk for some way tdransform

it to another problem that is easier to solve. Tlhasexample, we seek an integrating
factor that might transform a first-order ordinahyferential equation into an exact

one (or would reduce the order of a higher-ordéfietintial equation, in the more

general case).

A notoriously difficult problem in the theorgf partial differential equations
(PDEs) is the case oonlinearPDEs. In contrast to the case of linear PDEsgtleer
no general method for solving nonlinear ones. Tigugen a nonlinear PDE we look
for ways to associate it with some other PDE (pedfly a linear one!) whose solu-
tions are already known. For example, Baggers equatiornu=uy+2uuy is a nonlin-
ear PDE for the function(x,t) (subscripts denote partial derivatives with respge
the indicated variables). This PDE can be transéornmto the lineaheat equation
Vi=Vyxx by using the so-calle@ole-Hopf transformatioru=vy /v. As can be shown, if
v(x,t) is a solution of the heat equation th&rt) is a solution of the Burgers equation
(the converse is not true in general).

Backlund transformationéBTs) were originally devised mainly as a tool -
taining solutions of nonlinear PDEs (see [1] anel teferences therein). They were
later also proven useful ascursion operatorgor constructing infinite sequences of
nonlocal symmetries and conservation laws of aetiges of PDEs [2—6].

In simple terms, a BT is a system of PDEseating two fields that are required
to independently satisfy two respective PDEs [t&im @) and )] in order for the
system to be integrable for either field. We sagt tthe PDEsd) and ) areinte-
grability conditionsfor self-consistency of the BT. If a solution dP (@) is known,
then a solution of PDEbJ is obtained simply by integrating the BT, withdaving to
actually solve the latter PDE (which, presumablguld be a harder task). In the case
where the two fields satisfy the same PDE, dbé-BT produces new solutions of
this PDE from old ones.

As described above, a BT is an auxiliary foolfinding solutions of a given (usu-
ally nonlinear) PDE, using known solutions of them& or another PDE. Now,
suppose the BT itself is the differential systenosdisolutions we are looking for. As
will be seen, one possible way to solve this pnoblis to first seek parameter-
dependent solutions of both integrability conditaf the BT. By properly matching
the parameters (provided this is possible) a smiutif the given differential system is
obtained.

The above method is particularly effectivéimear problems, given that paramet-
ric solutions of linear PDEs are generally easiefiid. An important paradigm of a
BT associated with a linear problem is offered iy Maxwell system of equations of
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electromagnetism [7,8]. As is well known, the cstemcy of this system demands
that both the electric and the magnetic field ireteently satisfy a respective wave
equation. The wave equations for the two fieldsehlmown, parameter-dependent
solutions; namely, monochromatic plane waves willitiary amplitudes, frequencies
and wave vectors (the “parameters” of the probldy)inserting these solutions into
the Maxwell system, one may find the appropriatest@ints for the parameters in
order for the plane waves to also be solutions akWell's equations.

In Section 2 we review the classical conagfpa BT. The solution-generating
process by using a BT is demonstrated in a numfexamples.

In Sec. 3 a different perception of a BT iegented, according to which it is the
BT itself whose solutions are sought. The concégtanametric conjugate solutions
is introduced.

In Sec. 4 we examine the connection betwe&s &d recursion operators for
generating infinite sequences of nonlocal synmewiePDESs.

2. Backlund transformations and generation of soltions

Let u(x,t) be a function of two variables. For the partiafidatives ofu the following
notation will be used:
ou o°u 0%u o°u

8 = f = y = , —— =
u=u, Use Uy —— = U

@—6 u=u — —
ot ! G ot?

ax X X

etc. In general, a subscript will denote partidfedentiation with respect to the indi-
cated variable.

LetF be a function ok, t, u, as well as of a number of partial derivatives.ofVe
will denote this type of dependence by writing

F X6 U UG U4 Yo Y Yoo )= AU
We also write

F =0,F=0F/ox, F,=0,F=0F/ot, F,=0,F=0F/ou ,

etc. Note that in determining, and F; we must take into account both teeplicit
and theimplicit (throughu and its partial derivatives) dependencé-afn x andt. As
an example, forF [u] = 3xtu? we haveF, = 3tu® + 6xtuy, and Fy = 3xu? + 6xtuu .

Consider now two partial differential equasoPDEsP[u]=0 andQ[Vv]=0 for the
unknown functionss andv, respectively, where the bracket notation intredliabove
is adopted. Bothu andv are functions of two variables t. Independently, for the
moment, consider also a pair of coupled PDEsifandv:

B,/[uM=0 (8 B[uy=0 (D (1)

where the expressiors [u,V] (i=1,2) may contain, v as well as partial derivatives
of u andv with respect tox andt. We note thati appears in both equatiors) @nd
(b). The question then is: if we find an expressionuf by integrating ) for a given

v, will it match the corresponding expression fofound by integratingh) for the
samev? The answer is that, in order that and p) be consistent with each other for
solution foru, the functionv must be properly chosen so as to satisfy a cectaisis-
tency conditior(or integrability conditionor compatibility conditioi.
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By a similar reasoning, in order thaj &nd @) in (1) be mutually consistent for
solution forv, for some giveny, the functionu must now itself satisfy a correspond-
ing integrability condition.

If it happens that the two consistency caadg for integrability of the system (1)
are precisely the PDE¥u]=0 andQ[Vv]=0, we say that the above system constitutes a
Backlund transformationBT) connecting solutions oP[u]=0 with solutions of
Q[V]=0. In the special case whelPe=Q, i.e., whenu andv satisfythe samePDE, the
system (1) is called aauto-Backlundransformation (auto-BT) for this PDE.

Suppose now that we seek solutions of the P[DE=0. Assume that we are able
to find a BT connecting solutions of this equation with solutiong of the PDE
Q[Vv]=0 (if P=Q, the auto-BT connects solutionsandv of the same PDE) and let
v=Vg(X,t) be some known solution v]=0. The BT is then a system of PDEs for the
unknownu,

Bluyl=0, i=12 2)

The system (2) is integrable far given that the functiomnp satisfiesa priori the re-
quired integrability conditioQ[v]=0. The solutioru then of the system satisfies the
PDEP[u]=0. Thus a solutiom(x,t) of the latter PDE is found without actually solgi
the equation itself, simply by integrating the B yith respect ta. Of course, this
method will be useful provided that integrating Bystem (2) fow is simpler than
integrating the PDIP[u]=0 itself. If the transformation (2) is an auto-B3r the PDE
P[u]=0, then, starting with a known solutiag(x,t) of this equation and integrating
the system (2), we find another solutig(,t) of the same equation.
Let us see some examples of the use of aBj€nerate solutions of a PDE:

1. TheCauchy-Riemann relatiorsf Complex Analysis,
U =vy (8 u=-v (B 3)

(where the variablé has here been renamgdconstitute an auto-BT for tHeaplace
equation

PLW] = W+ W, =0 @)

Let us explain this: Suppose we want to solve yis¢éem (3) foru, for a given choice
of the functionv(x,y). To see if the PDEsa) and {) match for solution fou, we
must compare them in some way. We thus differen{@twith respect toy and p)
with respect tox, and equate the mixed derivativesuwofThat is, we apply the inte-
grability condition (i)y= (Uy)x . In this way we eliminate the variableand find the
condition that must be obeyed ¥(x,y):

PV =V, +v,=0 .

Similarly, by using the integrability conditiomJy= ()« to eliminatev from the sys-
tem (3), we find the necessary condition in ordhat this system be integrable fgr
for a given functioru(x,y):

P[U =u,+ u,=0.
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In conclusion, the integrability of system (3) wiespect to either variableor v re-
quires that the other variable must satisfy thda@pequation (4).

Let nowvg(x,y) be a known solution of the Laplace equation @bstituting
V=Vp in the system (3), we can integrate this systemh wespect tau. As can be
shown by eliminating/y from the system, the solutianwill also satisfy the Laplace
equation (4). As an example, by choosing the smtuip(x,y)=xy we find a new solu-
tion u(xy)= (0¢—=y)/2 +C.

2. ThelLiouville equationis written
PlU=u,-¢=0 < y-=2¢& (5)

Due to its nonlinearity, this PDE is hard to intggr directly. A solution is thus
sought by means of a BT. We consider an auxiliancfionv(x,t) and an associated
PDE,

QM = v =0 (6)
We also consider the system of first-order PDES,
Ut =v2 &2 (g y-y=v2 &M (b ()

Differentiating the PDEd) with respect td and the PDEK) with respect tok, and
eliminating (i —v;) and (xt+vy) in the ensuing equations with the aid af and (),
we find thatu andv satisfy the PDEs (5) and (6), respectively. This,system (7) is
a BT connecting solutions of (5) and (6). Startivith the trivial solutiorv=0 of (6),
and integrating the system (7), which reads

UXZ\/EGU/Z, u[:\/_ZéJ/Z ﬂ

we find a nontrivial solution of (5):

X+t
u (X t)_—2ln(C—ﬁj

(see Appendix).

3. The 8ine-Gordon” equatiorhas applications in various areas of Physics, e.g.
in the study of crystalline solids, in the transsios of elastic waves, in magnetism,
in elementary-particle models, etc. The equationoge name is a pun on the related
linear Klein-Gordon equation) is written

Plu=u,-sinu=0 < uy,=sinu (8)

The following system of equations is an auto-BTtfe nonlinear PDE (8):

1 . (u-=-V 1 1 .(u+v
E(U+V)X: asm(Tj , —2(u— V)t=g sv(—zj 9)
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wherea (#0) is an arbitrary real constant. [Because of tesgnce of, the system
(9) is called gparametricBT.] Whenu is a solution of (8) the BT (9) is integrable for
v, which, in turn, also is a solution of (8fv]=0; and vice versa. Starting with the
trivial solution v=0 of v= sinv, and integrating the system (9), which reads

Si

4

. u 2
u,=2asin— , U=—
2 a

Nj=

we obtain a new solution of (8):
u(xt) :4arctan[ C exé ax+ %aj}

3. Method of parametric conjugate solutions

(see Appendix).

As presented in the previous section, a BT is adliaty device for constructing so-
lutions of a (usually nonlinear) PDE from known g@ns of the same or another
PDE. The related problem where solutions of théedghtial system representing the
BT itself are sought is also of interest, howewsd has been studied in connection
with the Maxwell equations of electromagnetism [.7,8

To be specific, assume that we need to iategx given system of PDEs connect-
ing two unknown functions(x,y) andv(x,y):

Bluv=0, i=12 (10)

Suppose that the integrability of the above sysi@nboth functions requires that
andv separately satisfy the respective PDEs

Plu=0 (9  dV¥=0 (b (11)

That is, the system (10) is a BT connecting sohgiof the PDEs (11). Assume, now,
that these PDEs possess kngyvanmameter-dependent solutioakthe form

u=~f(x vy,a,f,...) , v=0d(X VYx,1,..) (12)

wherea, f, k, 4, etc., are (real or complex) parameters. If valiethese parameters
can be determined for whiahandv jointly satisfy the system (10), we say that the
solutionsu andv of the PDEs (14) and (1D), respectively, areonjugate through the
BT (10) (orBT-conjugatefor short). By finding a pair of BT-conjugate stbns (12)
one thus automatically obtains a solution of thretesy (10).

Note that solutions dfoth integrability conditions (11) of the system (10ush
now be known in advance! From the practical pointiew the method is thus most
applicable inlinear problems, since it is much easier to find param@épendent so-
lutions of the PDEs (11) in this case.

Let us see an example: Going back to the IBaReemann relations (3), which is
an auto-BT connecting solutions of the Laplace &gnd4), we try the following pa-
rametric solutions of the latter PDE:
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u(x =a(X-yY)+pxyy,
V(X V)= Xy+A X+ u y.

Substituting these expressions into the BT (3),fwe that x=2a, u= andi= —.
Therefore, the solutions

u(x Y=a(X- )+ xyy,
V(X Y)=2axy-y xSy
of the Laplace equation are BT-conjugate throughGhuchy-Riemann relations.
As a counter-example, let us try a differ@mhbination of parametric solutions:
u(x y)=axy, Mxy=paxy.

Inserting these into the system (3) and taking adcount the independencexcnd
y, we find that the only possible values of the patersa andp area=£=0, so that
u(x,y)= v(x,y)=0. Thus, no non-trivial BT-conjugate solutions éxmsthis case.

4. BTs as recursion operators for symmetries of PEs

The concept of symmetries of PDEs has been exwgsiiscussed in [1] and [9]. Let
us review the main ideas:

Consider a PDE[u]=0, whereu=u(xt). A transformatioru (x,t) —> u’ (x,t) from
the functionu to a new functioru” represents aymmetryof this PDE if the following
condition is satisfiedu’(x,t) is a solution of[u]=0 if u(x,t) is a solution. That is,

F[u]=0 when FJ[u]=0 (23)
Aninfinitesimal symmetry transformatias written
uU=u+du=u+aqy (14)

wherea is an infinitesimal parameter. The functiQu]=Q(x, t, u, ux, U ,...) is called
thesymmetry characteristiof the transformation (14).

In order that a functioQ[u] be a symmetry characteristic for the PBRi]=0, it
must satisfy a certain PDE that expressessgimametry conditiorfor F[u]=0. We
write, symbolically,

S(Q; =0 when FJ[ul=0 (15)

where the expressidddependdinearly on Q and its partial derivatives. Thus, (15) is
a linear PDE forQ, in which equation the variable enters as a sort of parametric
function that is required to satisfy the PBRi]=0.

A recursion operatorfz [10] is a linear operator which, acting on any syetry
characteristi®, produces a new symmetry characteriiec- RQ. That is,

S(RQ =0 when S(Q 0= C (16)

It is easy to show thany power of a recursion operator also is a reconsoperator
This means that, starting with any symmetry charastic Q, one may in principle



BACKLUND TRANSFORMATIONS: AN INTRODUCTION

obtain an infinite set of characteristics (thus,iafimite number of symmetries) by
repeated application of the recursion operator.

A new approach to recursion operators wagestgd in the early 1990s [2,3] (see
also [4-6] and [11-13]). According to this view,racursion operator for the PDE
F[u]=0 is an auto-BT for the linear PDE (15) that expessthe symmetry condition
of F[u]=0; that is, a BT producing new solutio@s of (15) from old onesQ. Typi-
cally, this type of BT producesonlocal symmetries, i.e., symmetry characteristics
depending omtegrals(rather than derivatives) of

As an example, consider tti@ral field equation

Flgl=(g7"g),+(g"'g), =0 (17)

(as usual, subscripts denote partial differentiefjavhereg is aGL(n,C)-valued func-
tion of x andt (i.e., an invertible complemxn matrix, differentiable for alk, t).
LetQ[g] be a symmetry characteristic of the PDE (17is ttonvenient to put

Qldl = g@[q]

and write the corresponding infinitesimal symmetaynsformation in the form
9'=9+69= g+a oP[ d (18)

The symmetry condition th& must satisfy will be a PDE linear ®, thus in® also.
As can be shown [9] this PDE is

S(@; 9= @, + Py +[g g, @ J+[ g' g @] =0 (19)

which must be valid wheR[g]=0 (where, in general, A] B] = AB-BA denotes the
commutator of two matrice& andB).

For a givery satisfyingF[g]=0, consider now the following system of PDEs for
the matrix functionsd and®’:

o, =@ +[gg,, @]

. (20)
- =0, +[g 0, , D]

The integrability condition®’ ), = (®}),, together with the equatidf{g]=0, require

that® be a solution of (19):S(® ; g) = 0. Similarly, by the integrability condition

(®,), =(D,), one finds, after a lengthy calculatioB(®"; g) = 0.

In conclusion, for ang satisfying the PDE (17), the system (20) is a Blating
solutions® and®’ of the symmetry condition (19) of this PDE; thst fielating dif-
ferent symmetries of the chiral field equation (IIMus, if a symmetry characteristic
Q=g of (17) is known, a new characterisf}éc=g®" may be found by integrating the
BT (20); the converse is also true. Since the B) (#oduces new symmetries from
old ones, it may be regarded aeursion operatofor the PDE (17).
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As an example, for any constant maivixthe choiced=M clearly satisfies the
symmetry condition (19). This corresponds to thametry characteristiQ=gM. By
integrating the BT (20) fod’, we getd'=[X, M] andQ '=g[X, M], whereX is the “po-
tential” of the PDE (17), defined by the systenP&fEs

Xe=9"g ., -%=0"g (21)
Note thenonlocal character of the BT-produced symmeQ{y due to the presence of
the potentialX. Indeed, as seen from (21), in order to fadne has tontegratethe
chiral field g with respect to the independent variablesdt. The above process can

be continued indefinitely by repeated applicatibrthe recursion operator (20), lead-
ing to an infinite sequence of increasingly nonl@yanmetries.

Appendix

We describe the process of integrating the BB &nd (%) for the Liouville equa-
tion and the sine-Gordon equation, respectively.

1. The system §J reads
u, =~/2 "2 AQ)
u, =2 e"2 A.2)

We integrate (A.1) for, treatingt as constant:

du u/2 SUI2 gz _ X
&—\/Ee :>je dU—x/EI dx= ¢ __$+ D)

[whereh(t) is a function to be determined], from which wedghat

u=-2 In{— . h(t)} and therefore u, __ =2
V2 - JXE + h(t)
Substituting the above results into (A.2), we get:
W)= ——— = hi)=——sC
V2 J2o o

Thus we finally have:

u(x t):—zln(c:—%tj .
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2. The system &) reads

u, = 2a sin% (A.3)
2 .U

= —sin— A.4

U =~ sin (A.4)

Integrating (A.3) forx and using the integral formula

du 1 ( kuj
J' - =—In| tan—
sinku k 2

we have:
du_ oasiney = j— du_ _ 2aj dx =
dx 2 sin(u/2)
In (tan%) =ax+ g(t) (A.5)
Similarly, integrating (A.4) fot we find:
In (tangj _t +h(x) (A.6)
4 a

By comparing (A.5) and (A.6) we have that
t t
ax+g(t):g+ Y = Y- ax g)t—a.

But, a function ofx cannot be identically equal to a function bfunless both are
equal to the same const&it h(x) —ax =g(t) -t/a=C =

h(Y=ax+ C, d)=—+ C.

a

From (A.5) and (A.6) we then get

In (tan%) = ax+l+ C = (by puttingC in place ofe®)
a

u (X, t):4arctar{C exé ax+éj} .
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