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The real exponential function is defined as thesise of the logarithmic function.
Representations of the exponential function botthadimit of an infinite sequence
and as an infinite series are given. The lineaepethdence of the set {etp)} for
any number of real values bis proven.

Problem:Let a be a positive real number. We know how to defiff@ with m andn
integers. But, how do we defire* for a general, reat that may be arnrrational
number, i.e., cannot be written as a quotient gearsm andn ?

Well, if it is difficult to define a functiodirectly, we may try defining the inverse
function (assuming it exists). To this end, we cdasthe function

x1
|nx:jl¥dt, x>0 (1)
Then,
(Inx)'=1/x

where the prime denotes differentiation with respecx. Note in particular that
In1=0. It can also be shown [1] that, farbeR’, In(ab)=Ina+Inb, In(a/b)=Ina—Inb.
Thus, Inx is a logarithmic function in the usual sense.

The functionin x is increasing fox >0 (indeed, its derivative 1is positive for
x>0). Since Irx is monotone, this function is invertible. Cabkpx the inverse of Ix.
That is,

y=expx < x=Iny.

This means that

exp(lny)=y and Inexpx)=x.
It can be shown [1] that expis an exponential function in the usual sense,it.bas
the form exp=e”* for some real constarg¢>0, to be determined. We write

y=e* < x=Iny (xeR, yeR")
so that

e™=y and Ine*)=x.

Note in particular that, fox=0 we havee’=1 and In1=0, as required. Also, for=1
we have thatn (") = 1 and, by the definition (1) of the logarithmic fuimat,

Ine:E% dt=1.
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We will now show that the functioe (xeR) can be expressed as the limit of a
certain infinite sequence:

e = lim (1+§jn (xe R )

N—o0

Then, for anyacR" we will have thata=e"™ =

n
) xln a
a¥=e"2= |im (1+ j )

n—o0 n

Proposition 1Given a functionu=f (X) that assumes positive values fondilh its
domain of definition, the derivative df [ f (X)] is given by

d (%)
St = T 3)
d diny du_1 du_ f(y

Proof. —In f(x) = =
dx du dx udx fX

Proposition 2The derivative ofe* is given by(e*)'= e*.
Proof. In(e)=x = [In(e¥)]'=1 = (*)/e*=1 = (e¥)'=e”*, where we have
used relation (3) for the derivative lof(e").

Corollary: [expf (X)] =1 (x) expf (X) .

n
Now, consider the functiomg(x) = lim (1+5j (xeR). We have:
n—oo n

n-1 n-1 n -1
g'(x):lim|:n(1+§j 1}:Iim(l+5j ~ lim Kul(j (1+—Xj }
n—o n n n—w n N—>o0 n n

n -1
— lim (1+5) -lim (1%) — g(¥)-1= g(.

n—o n n—o0

Moreover,g(0)=1. Hence the functiop=g(x) satisfies the differential equatigri=y
with initial condition y=1 for x=0. On the other hand, the functigre” satisfies the
same differential equation with the same initiahdition. Since the solution of this
differential equation with given initial conditiors unique, we conclude that the
functionsg(x) ande* must be identical. Therefore relation (2) mustrbe.t

We note that, for=1, Eq. (2) gives

e=lim (1+1jn (=2.72) (4)

n—o n

This is the formula by which the numbers usually defined.
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In the same spirit we may show that anothessible representation of the
exponential functiore™ is in the form of a power (Maclaurin) series [2]:

. &X XX 3
e nzz(:)n! 1+x+2!+3!+ (xe R (5)

Indeed, notice that thederivative of this series is the series itselfivad as that the
value of the series is equal to 1 #r0. Although expressions (2) and (5) do not look
alike, they represent theame function, expx ! (Note: Two functions ofx are
considered identical if they have the same dormawf definition and assume equal
values for allxeD.)

We defined®” (a>0, xeR) in a rather indirect way by first defining thenfition e
as the inverse of the functiondrand then by writinga*=e ™. There is, however, a
more direct definition oR*. Let x;, X2, ... ,Xn, ... beanyinfinite sequence aftional
numbersx, such thatrl]im X, = Xe R. [Question:Can a sequence of rational numbers

—> 00

have anirrational limit? Yes! See, e.g., the expression (4) épwhere the latter
numberis irrational (see, e.g., [3]) We now definea* as follows:

a*=Ilima" (a>0, xe R.

n—oo

Since x, is a rational number for afl, raisinga to a rational number should not be a
problem. Note that the value af* does not depend on the specific choice of the
sequence,, as long as the limit of this sequence.is

y y
=Inx
y=¢€ 4
/1 0 1 X
0 X /

Graphs of exponential and logarithmic functions.

n
TheoremConsider the functior- (x) = z A exp(k x), where the real constarks
i=1
are different from each other. F(x)=0 for all x, thenA; =0 for alli=1,2,...n. Thus,
the functions {ex|pkix), i=1,2,...n} are a linearly independent set.

Proof. We will prove the theorem by induction. The casel is obvious, given
that the function exf§) is nonzero for any finite. Let us check the case=2. Thus,
assume that
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F(X) = Avexp(kiX) + Acexp(kx) =0 (for all realx) .
SinceF(X) is the constant function, its derivative mustigandentically:
F'(x) = ki Arexp(kux) + ko Az exp(kex) =0 .

Then,F'(X)—k; F(X)=0 = (ko—ky) Az exp(k2x) =0 = A, =0, given that, by assumption,
ko# k1. Thus, F(X) = A exp(kix) =0 = A1 =0. Forn=3, let

F(X) = Avexp(kiX) + Acexp(kax) + Agexp(ksx) =0 .

Then,F'(X)—ki F(X) =0 = (ko—ky) Az exp(kox) + (ks—ki1) Asexp(ksX) =0 = A, =A3=0
(casen=2). Hence, F(X) = A; exp(kiX) =0 = A; =0. Now, assume that the theorem is
valid for some value oh>2. We want to show that it is also valid for1l. To this

n+1

end, we consider the functiof(x) :z Aexp(k x). It is convenient to rename the
i=1

(n+1)-term as O-term, and write

F() = AexploX Y Aexp(k = €
i=1

so thatF'(x) = k, Ayexp(k, x)+zn: k Aexp(k X= C Then,

i=1

F)-koF(9=0 = 3 (k —k) Aexp(k Y= 0= A= A== A= 0
i=1

given that, by assumptiok; # ky, as well as that the theorem is assumed to bd vali
for a sum withn terms. Thusk(x) =Aoexp(koX) =0 = A =0. In conclusion:

The functiongexp (ki X), i=1,2,...}form a linearly independent set for different
values of the real constarits
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