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The many faces of the exponential function 
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The real exponential function is defined as the inverse of the logarithmic function. 
Representations of the exponential function both as the limit of an infinite sequence 
and as an infinite series are given. The linear independence of the set {exp (kx)} for 
any number of real values of k is proven.  

 
Problem: Let a be a positive real number. We know how to define a 

m/n with m and n 
integers. But, how do we define a x for a general, real x that may be an irrational 
number, i.e., cannot be written as a quotient of integers m and n ?  
      Well, if it is difficult to define a function directly, we may try defining the inverse 
function (assuming it exists). To this end, we consider the function  
 

1

1
ln , 0

x
x dt x

t
= >∫                                                (1) 

Then,   
(ln x)΄=1/x 

 
where the prime denotes differentiation with respect to x. Note in particular that  

ln1=0. It can also be shown [1] that, for a, b∈R+, ln(ab)=lna+lnb, ln(a/b)=lna–lnb. 
Thus, ln x  is a logarithmic function in the usual sense.  
      The function  ln x  is increasing for x >0 (indeed, its derivative 1/x is positive for  
x >0). Since ln x  is monotone, this function is invertible. Call  exp x  the inverse of ln x. 
That is,  

y =  exp x   ⇔   x =  ln y . 

This means that  

exp (ln y) =  y   and   ln (exp x) =  x . 
 
It can be shown [1] that exp x is an exponential function in the usual sense, i.e., it has 
the form  exp x =  e x  for some real constant  e >0, to be determined. We write  
 

y =  e x   ⇔   x =  ln y   (x∈R ,  y∈R+) 

so that  

e ln y =  y   and   ln (e x ) = x . 
 
Note in particular that, for x=0 we have  e0=1  and  ln1=0, as required. Also, for x=1 
we have that  ln (e1) =  1  and, by the definition (1) of the logarithmic function,  
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      We will now show that the function  e x (x∈R) can be expressed as the limit of a 
certain infinite sequence:  

lim 1 ( )
n

x

n

x
e x R

n→∞

 
= + ∈ 

 
                                           (2) 

 
Then, for any  a∈R+ we will have that  a=e lna  ⇒  

ln ln
lim 1

n
x x a

n

x a
a e

n→∞

 
= = + 

 
. 

 
      Proposition 1. Given a function  u= f (x) that assumes positive values for all x in its 
domain of definition, the derivative of  ln [  f (x)]   is given by  
 

( )
ln ( )

( )

d f x
f x

dx f x

′
=                                                      (3) 

 

      Proof.  
(ln ) 1 ( )

ln ( )
( )

d d u du du f x
f x

dx du dx u dx f x

′
= = =  .  

 
      Proposition 2. The derivative of  e x is given by  (e x)΄=  e x .  
 
      Proof.  ln (e x ) = x  ⇒  [ln (e x )]΄=1  ⇒  (e x )΄/ e x  =1  ⇒  (e x )΄= e x , where we have 

used relation (3) for the derivative of  ln (e 
x).  

      Corollary:   [exp f (x)]΄ = f ΄ (x) exp f (x) .  

      Now, consider the function  ( ) lim 1
n

n

x
g x

n→∞

 
= + 

 
  (x∈R).  We have:  

1 1 1

1

1
( ) lim 1 lim 1 lim 1 1

lim 1 lim 1 ( ) 1 ( ).

n n n

n n n

n

n n

x x x x
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n n n n n

x x
g x g x
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− − −

→∞ →∞ →∞

−

→∞ →∞

          ′ = + = + = + +          
             

   
= + ⋅ + = ⋅ =   

   

 

 
Moreover, g(0)=1. Hence the function y=g(x) satisfies the differential equation y΄=y 
with initial condition  y=1 for x=0. On the other hand, the function  y=e x satisfies the 
same differential equation with the same initial condition. Since the solution of this 
differential equation with given initial condition is unique, we conclude that the 
functions g(x) and  e x must be identical. Therefore relation (2) must be true.  
      We note that, for x=1, Eq. (2) gives  
 

1
lim 1 ( 2.72)

n

n
e

n→∞

 
= + 

 
≃                                             (4) 

 
This is the formula by which the number  e  is usually defined.  
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      In the same spirit we may show that another possible representation of the 
exponential function  e x is in the form of a power (Maclaurin) series [2]:  
 

2 3

0

1 ( )
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n
x

n

x x x
e x x R

n

∞

=

= = + + + + ∈∑ ⋯                                  (5) 

 
Indeed, notice that the x-derivative of this series is the series itself, as well as that the 
value of the series is equal to 1 for x=0. Although expressions (2) and (5) do not look 
alike, they represent the same function, exp x !  (Note: Two functions of x are 
considered identical if they have the same domain D of definition and assume equal 
values for all  x∈D.)  
      We defined  a 

x (a>0,  x∈R) in a rather indirect way by first defining the function ex 
as the inverse of the function ln x and then by writing  a 

x=e xlna. There is, however, a 
more direct definition of  a x. Let  x1 , x2 , ... , xn , ... be any infinite sequence of rational 
numbers  xn  such that lim n

n
x x R

→∞
= ∈ . [Question: Can a sequence of rational numbers 

have an irrational limit? Yes! See, e.g., the expression (4) for e, where the latter 
number is irrational (see, e.g., [3]).] We now define  a x as follows:  
 

lim ( 0, )nxx

n
a a a x R

→∞
= > ∈ . 

 
Since  xn  is a rational number for all n, raising  a  to a rational number should not be a 
problem. Note that the value of  a 

x does not depend on the specific choice of the 
sequence  xn , as long as the limit of this sequence is  x.  
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Graphs of exponential and logarithmic functions. 

 

      Theorem. Consider the function 
1

( ) exp( )
n

i i
i

F x A k x
=

=∑ , where the real constants ki 

are different from each other. If F(x) ≡ 0 for all x, then Ai =0 for all i= 1,2,...,n. Thus, 
the functions {exp (ki  x) , i= 1,2,...,n} are a linearly independent set.  

      Proof. We will prove the theorem by induction. The case n=1 is obvious, given 
that the function exp(kx) is nonzero for any finite x. Let us check the case n=2. Thus, 
assume that  
 



 The many faces of the exponential function 

 4

F(x) = A1 exp (k1x) + A2 exp (k2x) ≡ 0  (for all real x) . 
 
Since F(x) is the constant function, its derivative must vanish identically:  
 

F΄(x) = k1 A1 exp (k1x) + k2 A2 exp (k2x) ≡ 0 . 
 
Then, F΄(x) – k1 F(x) = 0 ⇒ (k2 – k1) A2 exp (k2 x) ≡ 0 ⇒ A2 =0, given that, by assumption,  
k2 ≠ k1 . Thus,  F(x) = A1 exp (k1x) ≡ 0 ⇒ A1 =0. For n=3, let  
 

F(x) = A1 exp (k1x) + A2 exp (k2x) + A3 exp (k3x) ≡ 0 . 
 
Then, F΄(x) – k1 F(x) = 0 ⇒ (k2 – k1) A2 exp (k2x) + (k3 – k1) A3 exp (k3x) ≡ 0 ⇒ A2 =A3 = 0 
(case n=2). Hence,  F(x) = A1 exp (k1x) ≡ 0 ⇒ A1 =0. Now, assume that the theorem is 
valid for some value of n >2. We want to show that it is also valid for n+1. To this 

end, we consider the function 
1

1

( ) exp( )
n

i i
i

F x A k x
+

=

=∑ . It is convenient to rename the 

(n+1)-term as 0-term, and write  

0 0
1

( ) exp( ) exp( ) 0
n

i i
i

F x A k x A k x
=

= + ≡∑  

so that 0 0 0
1

( ) exp( ) exp( ) 0
n

i i i
i

F x k A k x k A k x
=

′ = + ≡∑ . Then,  

F΄(x) – k0 F(x) = 0  ⇒ 0 1 2
1

( ) exp( ) 0 0
n

i i i n
i

k k A k x A A A
=

− ≡ ⇒ = = = =∑ ⋯  

given that, by assumption, ki ≠ k0 , as well as that the theorem is assumed to be valid 
for a sum with n terms. Thus, F(x) = A0 exp (k0 x) ≡ 0 ⇒ A0 =0. In conclusion:  
 

The functions {exp (ki  x) , i= 1,2,...} form a linearly independent set for different 
values of the real constants ki .  
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